• Title/Summary/Keyword: Slope of Autocovariances

Search Result 4, Processing Time 0.015 seconds

Classification of Speech and Car Noise Signals using the Slope of Autocovariances in Frequency Domain (주파수 영역 자기 공분산 기울기를 이용한 음성과 자동차 소음 신호의 구분)

  • Kim, Seon-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2093-2099
    • /
    • 2011
  • Speech signal and car noise signal such as muffler noise are segregated from the one which has both signals mixed using statistical method. To classify speech signal from the other in segregated signals, FFT coefficients were obtained for all segments of a signal where each segment consists of 128 elements of a signal. For several coefficients of FFT corresponding to the low frequencies of a signal, autocovariances are calculated between coefficients of same order of all segments of a signal. Then they were averaged over autocovariances. Linear equation was eatablished for the those autocovariances using the linear regression method for each siganl. The coefficient of the slope of the line gives reference to compare and decide what the speech signal is. It is what this paper proposes. The results show it is very useful.

Distribution of the Slopes of Autocovariances of Speech Signals in Frequency Bands (음성 신호의 주파수 대역별 자기 공분산 기울기 분포)

  • Kim, Seonil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1076-1082
    • /
    • 2013
  • The frequency bands were discovered which maximize the slopes of autocovariances of speech signals in frequency domain to increase the possibility of segregation between speech signals and background noise signal. A speech signal is divided into blocks which include multiples of sampled data, then those blocks are transformed to frequency domain using Fast Fourier Transform(FFT). To find linear equation by Linear Regression, the coefficients of autocovariance within blocks of some frequency band are used. The slope of the linear equation which is called the slope of autocovariance is varied from band to band according to the characteristics of the speech signal. Using speech signals of a man which consist of 200 files, the coefficients of the slopes of autocovariances are analyzed and compared from band to band.

Implementation of Environmental Noise Remover for Speech Signals (배경 잡음을 제거하는 음성 신호 잡음 제거기의 구현)

  • Kim, Seon-Il;Yang, Seong-Ryong
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • The sounds of exhaust emissions of automobiles are independent sound sources which are nothing to do with voices. We have no information for the sources of voices and exhaust sounds. Accordingly, Independent Component Analysis which is one of the Blind Source Separaton methods was used to segregate two source signals from each mixed signals. Maximum Likelyhood Estimation was applied to the signals came through the stereo microphone to segregate the two source signals toward the maximization of independence. Since there is no clue to find whether it is speech signal or not, the coefficients of the slope was calculated by the autocovariances of the signals in frequcency domain. Noise remover for speech signals was implemented by coupling the two algorithms.

A Portmanteau Test Based on the Discrete Cosine Transform (이산코사인변환을 기반으로 한 포트맨토 검정)

  • Oh, Sung-Un;Cho, Hye-Min;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.323-332
    • /
    • 2007
  • We present a new type of portmanteau test in the frequency domain which is derived from the discrete cosine transform(DCT). For the stationary time series, DCT coefficients are asymptotically independent and their variances are expressed by linear combinations of autocovariances. The covariance matrix of DCT coefficients for white noises is diagonal matrix whose diagonal elements is the variance of time series. A simple way to test the independence of time series is that we divide DCT coefficients into two or three parts and then compare sample variances. We also do this by testing the slope in the linear regression model of which the response variables are absolute values or squares of coefficients. Simulation results show that the proposed tests has much higher powers than Ljung-Box test in most cases of our experiments.