• Title/Summary/Keyword: Slope estimation

Search Result 474, Processing Time 0.03 seconds

Quantitative Approach of Soil Prediction using Environment Factors in Jeju Island (환경요인을 이용한 제주도 토양예측의 정량적 연구)

  • Moon, Kyung-Hwan;Seo, Hyeong-Ho;Sonn, Yeon-Kyu;Song, Kwan-Chul;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • Parent material, climate, topography, biological factors, and time are considered five soil forming factors. This study was conducted to elucidate the effects of several environment factors on soil distribution using quantitative analysis method, called soil series estimation algorithm in the soils of Jeju Island. We selected environment factors including mean temperature, annual precipitation, surface geology, altitude, slope, aspect, altitude difference within 1 $km^2$ area, topographic wetness index, distance from the shore, distance from the mountain peak, and landuse for a quantitative analysis. We analyzed the ranges of environment factors for each soil series and calculated probabilities of possible-soil series for certain locations using estimation algorithm. The algorithm can predicted exact soil series on the soil map with correctness of 33% on $1^{st}$ ranking, 62% within $2^{nd}$ ranking, 74% within $5^{th}$ ranking after estimating using randomly extracted environment factors. In predicted soil map, soil sequences of Entisols-Alfisols-Andisols on northern area and Alfisols-Ultisols-Andisols on western area can be suggested along increasing altitude. More modeling studies will be needed for the genesis process of soils in Jeju Island.

Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities (주문진 표준사의 상대밀도에 따른 불포화 투수계수함수 산정)

  • Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2369-2379
    • /
    • 2013
  • The Soil-Water Characteristics Curve (SWCC) is affected by the initial density of soil under unsaturated condition. Also, the characteristic of hydraulic conductivity is changed by the initial density of soil. To study the effect of initial density of unsaturated soil, SWCC and the Hydraulic Conductivity Function (HCF) of Jumoonjin sand with various relative densities, 40%, 60% and 75% were measured in both drying and wetting processes. As the results of SWCC estimated by van Genuchten (1980) model, the parameter related to Air Entry Value(AEV), ${\alpha}$ in the wetting process is larger than that in drying process, but the parameters related to the SWCC slope, n and the residual water content, m are larger than those in wetting process. The AEV is increased or Water Entry Value (WEV) is decreased with increasing the relative density of sand. The AEV is larger than the WEV at the same relative density of sand. As the results of HCF estimated by van Genuchten (1980) model which is one of the parameter estimation methods, the unsaturated hydraulic conductivity maintained at a saturated one in the low level of matric suctions and then suddenly decreased just before the AEV or the WEV. The saturated hydraulic conductivity in drying process is larger than that in wetting process. The saturated hydraulic conductivity is decreased with increasing the relative density of sand in both drying and wetting processes. Also, the hysteresis in unsaturated HCFs between drying and wetting process was occurred like the hysteresis in SWCCs. According to the test results, the AEV on SWCC is decreased and the saturated hydraulic conductivity is increased with increasing the initial density. It means that SWCC and HCF are affected by the initial density in the unsaturated soil.

A Study on the Stand Volume Estimation by Strand Method (Strand법(法)에 의한 임분재적추정(林分材積推定)에 관(關)한 연구(硏究))

  • Lee, Heung Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.187-192
    • /
    • 1991
  • This study was carried out to estimate the stand volume for Japanese larch(Larix leptolepis) by Strand sampling method. The data collected for this study were based on the 380 sample plots from the field survey, which were distributed in the major part of Korea(Kyeongi, Kangweon, Chungbuk, Chungnam, Chunbuk and Kyeongbuki), and the plotless sampling instrument such as dendrometer, spiegel relascope and tele-relascope were used. The procedure for this study is summarized briefly as follows : 1. There were not only significant differences between volume estimation by Strand sampling method and that by plot survey method, and the relationship was y=bx, where b approached nearly 1. Therefore, the stand volume of Japanese larch could by estimated by Strand sampling method. 2. The value measured by three different plotless sampling instruments did not showed any significant differences between instruments and observers, density and instruments, and ground slope and instruments. 3. With the stand volume, basal area height showed the highest correlation and stand form height, average height, basal area per ha correlated with the volume in thier orders. 4. The best fitted equation of stand volume estimation with basal area height by relascope was as follow. log V=-0.0375+0.8910 log GH-1.5946 1/GH Stand volume table also was obtained using the above estimeated equation. 5. The relationship between estimated value and actual value was Y=bx, where b was nearly 1. The correlation coefficient was very high and the percentage of estimated error was 4.5%.

  • PDF

Building a Model for Estimate the Soil Organic Carbon Using Decision Tree Algorithm (의사결정나무를 이용한 토양유기탄소 추정 모델 제작)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Su-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.29-35
    • /
    • 2010
  • Soil organic carbon (SOC), being a help to forest formation and control of carbon dioxide in the air, is found to be an important factor by which global warming is influenced. Excavating the samples by whole area is very inefficient method to discovering the distribution of SOC. So, the development of suitable model for expecting the relative amount of the SOC makes better use of expecting the SOC. In the present study, a model based on a decision tree algorithm is introduced to estimate the amount of SOC along with accessing influencing factors such as altitude, aspect, slope and type of trees. The model was applied to a real site and validated by 10-fold cross validation using two softwares, See 5 and Weka. From the results given by See 5, it can be concluded that the amount of SOC in surface layers is highly related to the type of trees, while it is, in middle depth layers, dominated by both type of trees and altitude. The estimation accuracy was rated as 70.8% in surface layers and 64.7% in middle depth layers. A similar result was, in surface layers, given by Weka, but aspect was, in middle depth layers, found to be a meaningful factor along with types of trees and altitude. The estimation accuracy was rated as 68.87% and 60.65% in surface and middle depth layers. The introduced model is, from the tests, conceived to be useful to estimation of SOC amount and its application to SOC map production for wide areas.

A Study on the Control Algorithm for Active Walking Aids by Using Torque Estimation (모터 토크 추정을 통한 능동형 보행보조기의 차량 제어 알고리즘 구현)

  • Kong, Jung-Shik;Lee, Bo-Hee;Lee, Eung-Hyuk;Choi, Heung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.181-188
    • /
    • 2010
  • This paper presents the control algorithm of active walking aids estimating external torque of the wheels from user's will. Nowadays, interest of the walking aids is increased according to the increase in population of elder and handicapped person. Although many walking aids are developed, most of walking aids don't have any actuators for its movement. However, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Unfortunately it is difficult to precision control of walking will during its movement, because it is not easy to recognize user's walking will. Many kinds of methods are proposed to recognize of user's walking will. In this paper, we propose control algorithm of walking aids by using torque estimation from wheels. First, we measure wheel velocity and voltage at the walking aids. From these data, external forces are extracted. And then walking will that is included by walking velocity and direction is estimated. Finally, walking aids are controlled by these data. Here, all the processes are verified by simulation.

Effects of DEM Resolutions in Site Classification (DEM 해상도가 지반분류에 미치는 영향)

  • Kang, Su-Young;Kim, Kwang-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Site conditions affect the magnitude of loss due to geologic hazards including, but not limited to, earthquakes, landslides and liquefaction. Reliable geologic loss estimation system requires site information which can be achieved by GIS-based method using geologic or topographic maps. Slope data derived from DEM can be an effective indicator for classifying the site conditions. We studied and discussed the effect of different DEM resolutions in the site classification. We limited the study area to the south-eastern Korea and used two different resolutions of DEMs to observe discrepancies in the site classification results. Largest discrepancy is observed in the areal coverage of site class C(very dense soil and soft rock) and E(soft soil). Comparison of results shows that more areas are classified as site class B(general rock) or E(soft soil) when we use higher resolution DEM. The comparison also shows that more areas are classified as site class C or D(stiff soil) using lower resolution DEM. The comparison of results using resampled DEMs with different resolutions shows that the areal coverage of site class B and E decreases with decreasing resolutions. On the contrary, areal coverage of site class C and D increase with decreasing resolutions. Loss estimation system can take advantage of higher-resolution DEMs in the area of rugged or populated to obtain precise local site information.

Biomass Regressions of Pinus densiflora Natural Forests of Four Local Forms in Korea (한국산(韓國産) 4개(個) 지역형(地域型) 소나무천연림(天然林)의 물질(物質) 현존량(現存量) 추정식(推定式)에 관(關)한 연구(硏究))

  • Park, In Hyeop;Kim, Joon Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.3
    • /
    • pp.323-330
    • /
    • 1989
  • Pinass densiflora natural forests of four local forms in Korea were studies to investigate effective biomass estimation method. Dimension analysis was used and three allometric regression models, such as logWt=A+BlogD, logWt=$A+B1ogD^2H$ and 1ogWt=A+BlogD+ClogH were applied to estimate biomass, The most accurate estimation was made by the regression model of logWt=A+BlogD+ClogH where Wt is dry weight, D is diameter at breast height, and H is tree height. However, dry weights of cones and dead branches were remotely related to tree size factor, such as D and H. In the interest of practical use. generalized allometric regressions for all samples trees of four stands were computed and analysis of covariance was used to compare the allometric regressions among the four stands. Based on the test criteria applied in this study, significant differences were found in terms of error variance and regression intercept, not in terms of regression slope. These trends suggest a generalized biomass regression is not valid for accurate estimation over a range of four local form stands.

  • PDF

Design of the Power Assist Controller for the In-Wheel Type Smart Wheelchair (인휠형 스마트 휠체어를 위한 힘 보조 제어기 설계)

  • Kong, Jung-Shik;Baek, Seung-Yub
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • This paper presents the design of the power-assisted controller for the in-wheel type smart wheelchair by using torque estimation that is predicted by relationship between input voltage and output wheel angular velocity. Nowadays, interest of the moving assistant aids is increased according to the increase in population of the elderly and the handicapped person. However some of the moving assistant aids have problems. For example, manual wheelchair has difficulty moving at the slope, because users lack the muscular strength of their arm. In electric wheelchair case, users should be weak by being decreased muscles of upper body. To overcome these problems, power-assisted electric wheelchair are proposed. Most of the power-assisted electric wheelchair have the special rims that can measure the user's power. In here, the rims have to be designed to install the sensors to measure user's power. In this paper, we don't design the rim to measure the man power. To predict the man power, we propose a control algorithm of the in-wheeled electric wheelchair by using torque estimation from the wheel. First, we measure the wheel velocity and voltage at the in-wheel electric wheelchair. And then we extract driving will forces by using proposed mathematical model. Also they are applied at the controller as the control input, we verify to be able to control in-wheel type smart wheelchair by using simulation.

Estimation of design floods for ungauged watersheds using a scaling-based regionalization approach (스케일링 기법 기반의 지역화를 통한 미계측 유역의 설계 홍수량 산정)

  • Kim, Jin-Guk;Kim, Jin-Young;Choi, Hong-Geun;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.769-782
    • /
    • 2018
  • Estimation of design floods is typically required for hydrologic design purpose. Design floods are routinely estimated for water resources planning, safety and risk of the existing water-related structures. However, the hydrologic data, especially streamflow data for the design purposes in South Korea are still very limited, and additionally the length of streamflow data is relatively short compared to the rainfall data. Therefore, this study collected a large number design flood data and watershed characteristics (e.g. area, slope and altitude) from the national river database. We further explored to formulate a scaling approach for the estimation of design flood, which is a function of the watershed characteristics. Then, this study adopted a Hierarchical Bayesian model for evaluating both parameters and their uncertainties in the regionalization approach, which models the hydrologic response of ungauged basins using regression relationships between watershed structure and model. The proposed modeling framework was validated through ungauged watersheds. The proposed approach have better performance in terms of correlation coefficient than the existing approach which is solely based on area as a predictor. Moreover, the proposed approach can provide uncertainty associated with the model parameters to better characterize design floods at ungauged watersheds.

The Estimation of Groundwater Recharge with Spatial-Temporal Variability at the Musimcheon Catchment (시공간적 변동성을 고려한 무심천 유역의 지하수 함양량 추정)

  • Kim Nam-Won;Chung Il-Moon;Won Yoo-Seung;Lee Jeong-Woo;Lee Byung-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.9-19
    • /
    • 2006
  • The accurate estimation of groundwater recharge is important for the proper management of groundwater systems. The widely used techniques of groundwater recharge estimation include water table fluctuation method, baseflow separation method, and annual water balance method. However, these methods can not represent the temporal-spatial variability of recharge resulting from climatic condition, land use, soil storage and hydrogeological heterogeneity because the methods are all based on the lumped concept and local scale problems. Therefore, the objective of this paper is to present an effective method for estimating groundwater recharge with spatial-temporal variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to the Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined during the period from 2001 to 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff at the outlet of the catchment. The results of temporal and spatial variations of groundwater recharge were presented here. This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use.