• Title/Summary/Keyword: Slope estimation

Search Result 474, Processing Time 0.031 seconds

Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery (드론 영상을 이용한 케나프(Hibiscus cannabinus L.) 작물 높이의 노지 표현형 분석)

  • Gyujin Jang;Jaeyoung Kim;Dongwook Kim;Yong Suk Chung;Hak-Jin Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.274-284
    • /
    • 2022
  • To use kenaf (Hibiscus cannabinus L.) as a fiber and livestock feed, a high-yielding variety needs to be identified. For this, accurate phenotyping of plant height is required for this breeding purpose due to the strong relationship between plant height and yield. Plant height can be estimated using RGB images from unmanned aerial vehicles (UAV-RGB) and photogrammetry based on Structure from Motion (SfM) algorithms. In kenaf, accurate measurement of height is limited because kenaf stems have high flexibility and its height is easily affected by wind, growing up to 3 ~ 4 m. Therefore, we aimed to identify a method suitable for the accurate estimation of plant height of kenaf and investigate the feasibility of using the UAV-RGB-derived plant height map. Height estimation derived from UAV-RGB was improved using multi-point calibration against the five different wooden structures with known heights (30, 60, 90, 120, and 150 cm). Using the proposed method, we analyzed the variation in temporal height of 23 kenaf cultivars. Our results demontrated that the actual and estimated heights were reliably comparable with the coefficient of determination (R2) of 0.80 and a slope of 0.94. This method enabled the effective identification of cultivars with significantly different heights at each growth stages.

Adequacy Evaluation of Stability Analyses Considering Rainfall Infiltration on Railroad Cut-off Soil Slopes (철도연변 절취 토사사면에 대한 강우에 의한 침투를 고려한 사면안정해석법의 적용성 평가)

  • Lee Su-Hyung;Hwang Seon-Keun;Sagong Myung;Kim Hyun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.137-146
    • /
    • 2005
  • 299 railroad slopes were investigated and the failure characteristics and reinforcement patterns were analyzed. Stability analyses on the 14 cut-off soil slopes were carried out. Surficial failures were predicted by infinite slope analyses assuming the temporarily perched ground water table at soil surface during rainfall period. Limit equilibrium analyses were also carried out and the influences of rainfall infiltration on the slope stabilities were taken Into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The adequacy of those analyses was evaluated by comparing the slope failure characteristics between analysis results and the past failure records. From the comparison results, it was deduced that the limit equilibrium analyses were not appropriate to estimate the shallow failure that occurred at most of the railroad cut-off soil slopes. For the better estimation of the surficial failure, not only the increase of pore-water pressure (reduction of matric suction), but also the influence of water flows over slope surface which erode soil mass, should be evaluated and considered.

A Pilot Study on Environmental Understanding and Estimation of the Nak-Dong River Basin Using Fuyo-1 OPS Data (Fuyo-1 OPS 자료를 이용한 낙동강 하류지역의 환경계측 시고)

  • Kim, Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.169-198
    • /
    • 1996
  • The objectives of this investigation are : 1. To analyze spectral signature and the associated vegetation index for geometric illumination conditions inf1uenced by low solar elevation and high slope orientations in mountainous forest. 2. To assess the accuracy of the spectral angle mapper classification for the a winter land cover in comparison with the maximum likelihood classification. 3. To produce the image of water quality and water properties that could be used to estimate the water pollution sources and the tide-included by turbid water in estuarine and coastal areas. These objectives are to characterize environmental and ecological monitoring applications of the Nak-Dong River Basin by using Fuyo-1 OPS VNIR data acquired on December 26, 1992. The results of this paper are as follows : 1. The spectral digital numbers and vegetation indexes (NDVI and TVI) of mountainous forest are higher on the slope facing the sun than on the slope hidden the sun under low sun elevation condition. 2. The spectral angle mapper algorithm produces a more accurate land cover classification of areas with steep slope, various aspects and low solar elevation than the maximum likelihood classifier. 3. The maximum likelihood classification images can be used for identifying the location and movement of both freshwater and salt water, regardless of geometric illumination conditions. 4. The color-coded density sliced image of selected water bodies by using the near-infrared band 3 can provide distribution of the water quality of the Lower Nak-Dong River. 5. The color-coded normalized difference vegetation index image of the selected mountain forest is suitable to classify winter vegetation cover types, i.e., forest canopy densities for slope orientations.

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

The Simplified Pre-Estimation Model Development of a BIPV Generation Rate by the District Division (지역 구분을 통한 약식 BIPV 발전량 예측 모델 개발)

  • Choi, Won-Ki;Oh, Min-Seok;Shin, Woo-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.19-29
    • /
    • 2016
  • Whilst there are growing interests in pursuing energy efficiency and zero-energy buildings in built environment, it is widely recognised that Building-Integrated Photovoltaic (BIPV) is one of the most promising and required technologies to achieve these goals in recent years. Although BIPV is a broadly utilized technique in variety of fields in built environments, it is required that generation of BIVP should be analysed and calculated by external specialists. The aim of this research is to focus on developing a new diagram for prediction of the pre-estimation model in early design stage to harness solar radiation data, PV types, slopes, azimuth and so forth. The results of this study show as follows: 1) We analysed 162 districts in a national level and the examined areas were categorised into five zones. The standard deviation of the results was 2.9 per cent; 2) The increased value of solar radiation on a vertical plane in five categorised zones was 42kWh/m3, and the result was similar to the average value of 43.8kWh/m3; and 3) The pre-estimation of diagram was developed based on the categorisation of zones and azimuth as well as the results of the developed diagram showed little difference compared to the previously utilised method. The suggested diagram in this paper will contribute to estimate BIPV without any external contribution to calculate the value. Even though the result of this study shows little difference, it is required to investigate a number of different variables such as BIPV types, modules, slope angle and so forth in order to develop an integrated pre-estimation diagram.

Statistical Approach to Groundwater Recharge Rate Estimation for Non-Measured Areas of Water Levels (미계측 지역 지하수 함양량 추정을 위한 통계적 접근)

  • Kim, Gyoobum;Kim, Kiyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.73-85
    • /
    • 2008
  • 320 national groundwater monitoring stations have been constructed since 1995 and groundwater levels are measured automatically 4 times a day at each well. It has a difficulty to estimate an average recharge rate of watershed using the recharge rate of the monitoring site because of the lack of its representative on converting a point recharge rate into a spatial one. In this study, the relations between site characteristics (topography, hydraulics, geology, facilities, etc.) and recharge rates of 223 monitoring sites, which were selected using cluster analysis, were analyzed using statistical methods, and finally, regression models were constructed for a recharge rate estimation of non-measured areas. The independent variables for these simple regression models, 1) width of adjacent stream, 2) distance to the nearest stream, 3) topographic slope, and 4) rock type, are proposed using analysis of variance. These models have lots of advantages such as an easy data collection from topographic and geologic maps, a few input variables, and also simplicity in use. Suitability analysis from the comparison between estimation values and original ones at monitoring sites shows that these models are useful for a groundwater recharge estimation.

  • PDF

An Estimation of Flood Quantiles at Ungauged Locations by Index Flood Frequency Curves (지표홍수 빈도곡선의 개발에 의한 미 계측지점의 확률 홍수량 추정)

  • Yoon, Yong-Nam;Shin, Chang-Kun;Jang, Su-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The study shows the possible use of the index flood frequency curves for an estimation of flood quantiles at ungauged locations. Flood frequency analysis were made for the annual maximum flood data series at 9 available stations in the Han river basin. From the flood frquency curve at each station the mean annual flood of 2.33-year return period was determined and the ratios of the flood magnitude of various return period to the mean annual flood at each station were averaged throughout the Han river basin, resulting mean flood ratios of different return periods. A correlation analysis was made between the mean annual flood and physiographic parameters of the watersheds i.e, the watershed area and mean river channel slope, resulting an empirical multiple linear regression equation over the whole Han river basin. For unguaged watershed the flood of a specified return period could be estimated by multiplying the mead flood ratio corresponding the return period with the mean annual flood computed by the empirical formula developed in terms of the watershed area and river channel slope. To verify the applicability of the methodology developed in the present study the floods of various return periods determined for the watershed in the river channel improvement plan formulation by the Ministry of Construction and Transportation(MOCT) were compared with those estimated by the present method. The result proved a resonable agreement up to the watershed area of approximately 2,000k $m^2$. It is suggested that the practice of design flood estimation based on the rainfall-runoff analysis might have to be reevaluated because it involves too much uncertainties in the hydrologic data and rainfall-runoff model calibration.

Efficient Leakage Estimation of Public Agriculture Groundwater in Jeju Island (제주도 공공 농업용 지하수의 효율적 누수량 산정 연구)

  • Kim, MinChul;Park, WonBae;Kang, BongRae;Kim, JiMyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, leakage ratios of Jeju Island's public agricultural groundwater were calculated by utilizing field measurements of groundwater level and surface reservoir water level. The average leakage ratios were 75.6% at groundwater well A and 57.5% at well B, with the ratio inversely proportional to agricultural water usage. The level of agricultural reservoirs varied at constant intervals at night, and the amount of water leakage associated with the variation was estimated as 0.1 - 16.3 ㎥/h. The leakage ratio was also influenced by pipeline length, average slope, and number of farmhouses. Currently, the estimation of agricultural water leakage on Jeju Island is based upon field inspection which is very labor- and cost intensive. The leakage ratio estimated by monitoring the reservoirs associated with the well A and B were 73.3 and 54.7%, respectively, consistent with the values obtained by field measurements.

Simple Design of Seepage Flow (침투류 간편설계)

  • Yu, Dong-Hun;Eom, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • After investigating the basic problems of seepage flow, the friction factor equation of power form was developed for solving them. The use of power law for the estimation on friction factor enabled to develop the explicit form of equations without any iteration process being related to various non-dimensional physical numbers. For the derivation of friction factor equations, the existing data were re-analyzed, and the simple method of seepage flow design was devised with the power law equations for the estimation of slope, discharge, and diameter.

  • PDF

Soil Moisture Content Estimation Using Remote Sensing Technique (원격 측정 기법을 이용한 토양 함수비의 측정)

  • Lee, Jae Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.535-542
    • /
    • 1994
  • Remote sensing technique is based on the estimation of land surface characteristics from the measurement of the emitted radiation from the earth. The hydrologically related parameters studied using this approach include surface temperature, evapotranspiration, soil moisture, precipitation and snow. This study introduces a method for estimating moisture content of a bare soil from the observed and simulated brightness temperature. In a bare soil, microwave emission depends on moisture content, soil temperature, and surface roughness. The method is based on a radiative transfer model with some modifications of Fresnel reflection coefficient to take into account the effect of surface roughness. One smooth bare field and two fields with different surface roughness are prepared for the study. The results indicate that the effect of surface roughness is to increase the soil's brightness temperature and to reduce the slope of regression between brightness temperature and moisture contents.

  • PDF