• Title/Summary/Keyword: Slope erosion

Search Result 358, Processing Time 0.027 seconds

The Theoretical Analyses of the Soil Erosion and Conservation 3. Analytical Theory of Slope Erosion (토양의 침식과 보존에 관한 이론적 분석 3. 사면 토양의 침식에 관한 이론)

  • 장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.1
    • /
    • pp.41-47
    • /
    • 1996
  • The theory of slope erosion is developed along similar lines to the theory of heat flow in solid added to the correcting factor. if slope erosion in the forest and grassland proceeds according to the hypothesis, it is $\delta$y $\delta^2$y = k $\delta^2$y $\delta$$X^2$+f(s b. t) where 5 is internal properties of slope soil and b is biota on slope. When the variables of the equation of slope erosion are x = -λ the initial elevation=-f(λ), x=λ, x==a, the steady value of the initial elevation=y, and dy dx x=0> =O(t>o), respectively, the houndary condition due to the solution of the equation of slope erosion is y= 2 √$\pi$kt [∫a o λe $(X-λ)^2$4kt dλ- ∫ao- $(x+λ)^2$4kt dλ] + ∫∫∫ f (s.b. t)dtdbds

  • PDF

Characteristics of Soil Erosion on the Fill-slope of Forest Road by Elapsed Years after Road Construction (임도개설후 경과년수에 따른 임도 성토비탈의 토사침식 특성)

  • Woo, Bo-Myeong;Choi, Hyung-Tae;Lee, Seung-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • The purpose of this study was to analyze the characteristics of soil erosion on the fill-slope of forest road by elapsed years after road construction. Thirteen plots were established on the fill-slope of the newly-constructed forest road, and surveyed for two years(1997~1998). In these plots, the data about soil erosion, surface runoff, vegetation coverage, slope structural characteristics and rainfall were collected. In 1997, the major causes for soil erosion were found by the correlation coefficients with the amount of surface runoff from the fill-slope, vegetation coverage, slope length, slope degree, total rainfall and max. 1 hour rainfall. But, in 1998, the major causes for soil erosion were vegetation coverage and slope degree. Using the stepwise multiple regression method, in 1997, the amount of soil erosion from the fill-slope was complexly expressed as a exponential function of statistically significant the amount of surface runoff from the fill-slope, total rainfall, slope degree of fill-slope and vegetation coverage, but, in 1998, simply expressed as a exponential function of vegetation coverage.

  • PDF

Evaluating Erosion Risk of Revegetated Cutslope with Seed Spraying (식생기반재 뿜어붙이기의 비탈면 녹화이후 침식 안정성 평가 방법)

  • Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.63-76
    • /
    • 2016
  • Slope revegetation refers to the use of vegetation and construction to protect a barren slope devastated by road and building construction. Among many revegetation strategies, hydroseeding has been widely utilized to stabilize barren slopes and has become the representative approach. Previous studies on slope stability have been conducted from a civil engineering perspective, mainly evaluating the stability of cut-slopes on solid bedrock and the use of concrete structures to stabilize devastated slopes. This study was conducted to develop a method to evaluate erosion risk of revegetated cut-slopes, based on criteria derived from previous studies. Twenty-five factors were surveyed on both on-the-spot erosion slopes and non-erosion slopes after slope revegetation to compare slope types. The scores of all non-erosion slopes exceed 80 score while erosion slopes are 80 below. Erosion slopes got the range of 68-74 score while non-erosion slopes got the range of 81-100 score in the first result which was not applied for weighted-values. The scores of all non-erosion slopes exceeded 3.10, while erosion slopes were below 3.10. Erosion slopes were in the range of 2.73-3.09, while non-erosion slopes were in the range of 3.15-3.90 in the second result, which was applied with weighted-values according to the AHP result from a previous study.

Evaluation of Sediment Yield using Area-weighted Measured Slope and Slope Length at HeaAn Myeon Watershed (실측 경사장 및 경사도를 고려한 양구 해안면 유역의 유사량 평가)

  • Yoo, Dongseon;Kim, Ki-Sung;Jang, Won Seok;Jun, Mansig;Yang, Jae E.;Kim, Seong Chul;Ahn, Jaehon;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.569-580
    • /
    • 2008
  • In this study, area-weighted slope and slope length module, considering measured field slope and slope length of the agricultural fields within the subwatershed, was developed using the ArcView Avenue programming to reflect the field topography of the Soil and Water Assessment Tool (SWAT) HRU in simulating the hydrology and water quality. Flow and sediment yield estimated values of the SWAT were compared with and without applying area-weighted slope and slope length module, developed in this study. There was 103% increases in estimated sediment with area-weighted slope and slope length module for the study watershed. The soil erosion and sediment yield from only agricultural field in Hae-an watershed was also assessed. There are 111% increase in estimated soil erosion and 112% increase in estimated sediment by applying area-weighted slope and slope length module. This study shows that the area-weighted slope and slope length module needs to be utilized in estimating the HRU field slope and slope length for accurate estimation of soil erosion and nonponit source pollutant modeling with the SWAT although it is not feasible to measure topographic information for every agricultural fields within the watershed. The area-weighted slope and slope length module can be used in identifying soil erosion hot spot areas for developing cost effective and efficient soil erosion management practices.

Characteristics of Soil Erosion on the Forest Fired Sites by Using Rainfall Simulator (인공강우장치를 이용한 산불발생지의 토양침식 특성에 관한 연구)

  • Lee, Heon Ho;Joo, Jae Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.649-656
    • /
    • 2006
  • The purpose of study is to measure soil erosion quantity for elapsed four years from the fire on forest fired sites of Dong-gu, Daegu. This study was conducted to investigate the characteristics of soil erosion by fire occurrence influencing on the soil erosion were. Also analysis result follows that the relations between soil erosion quantity and rainfall intensity, the slope and elapsed year. The results analysed were as follows: 1. Soil erosion by year of occurrence of forest fire was increased 1.9 to 5.7 times as rainfall intensity was increased by 30 m/hr, and 1.4 to 14.2% as degree of slope was increased by $10^{\circ}$. 2. In the first year of forest fire occurrence, soil erosion was fairly heavy for 10 minutes of initial rainfall of which rainfall intensity was 80 m/hr and degree of slope was $30^{\circ}$. The amount of soil erosion was gradually reduced as elapsed time. From two years after fire, the amount of soil erosion by rainfall intensity and degree of slope was nearly constant. 3. The amount of soil erosion by rainfall intensity and slope in accordance with elapsed time after fire was reduced 28.9 to 94.1% in three years after occurrence of forest fire as compared to the first year of fire. Soil erosion was fairly heavy by rainfall intensity and slope in the first year of fire, but it was gradually reduced from two years after fire. 4. In the analysis on influences of each factors on the amount of soil erosion on forest fired sites, the amount of soil erosion was significant differences in major impacts of each rainfall intensity, degree of slope and elapsed year after fire and interaction of rainfall intensity${\times}$degree of slope and rainfall intensity${\times}$elapsed year after fire, but no differences were observed in interaction of degree of slope${\times}$elapsed year after fire and rainfall intensity${\times}$degree of slope${\times}$elapsed year after fire. Rainfall intensity was the most affecting factor on the amount of soil erosion and followed by degree of slope and elapsed year after fire. 5. For correlation between soil erosion and affecting three factors, soil erosion showed significant positive relation with rainfall intensity and degree of slope at I % level, and significant negative relation with elapsed year after fire at 1 % level. 6. As a result of regression of affecting three factors on soil erosion. rainfall intensity was most significant impact factor in explaining the amount of soil erosion on forest fired sites, followed by degree of slope and elapsed year after forest fire. 7. The formula for estimating soil erosion using rainfall intensity, degree of slope and elapsed year after forest fire occurrence was made. S.E = 0.092R.I + 0.211D.S - 0.942E.Y(S.E : Soil erosion, R.I : Rainfall intensity, D.S : Degree of slope, E.Y : Elapsed year after forest fire occurrence)

Effect of Rainfall Intensity, Soil Slope and Geology on Soil Erosion (토양침식에서의 강우특성, 토양경사 및 지질의 영향)

  • Nam, Koung-Hoon;Lee, Dal-Heui;Chung, Sung-Rae;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.69-79
    • /
    • 2014
  • This study aims to elucidate the relative importance of geological characteristics, soil slope, and rainfall intensity in relation to soil erosion. To this end, indoor rainfall simulation experiments were carried out under different conditions of rainfall intensities, soil slope, and geological characteristics. The test results show that the factors affect soil erosion in the order of soil slope > rainfall intensity > organic content in the soil. Erosion rates were proportional to rainfall, and increase with increasing clay content. Therefore, the soil erosion rate increases strongly with increasing organic content and clay content. The results show that the soil erosion rate in areas of metamorphic rocks shows a marked increase compared with areas of steep slope and sedimentary rocks. These results indicate that the geological characteristics to produce soil are closely related to sedimentation before and after erosion, providing basic information for the development of models to predict soil erosion rates.

Development of the Forest Road Cut-slope Rehabilitation Techniques Using Gabion Systems with Vegetation Base Materials (식생기반재 돌망태를 이용한 임도비탈면 복원기술 개발)

  • Park, Jae-Hyeon;Jeong, Yong-Ho;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.92-103
    • /
    • 2008
  • Development of new approaches to achieve naturally good ecological potential of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials to prevent slope failure and erosion, in the area with highly erodible soil. As a result on the type analysis of gabion systems already installed in road cut-slopes, gabion systems were generally established to prevent slope failure. Existing gabion systems can be divided into monolithic and modular system and can be divided into ten subtypes according to the purpose of establishment and combination of other measures. As a result on the monitoring of erosion amount from forest road cut-slopes in the test applications, the order of erosion amount from largest to smallest is as follows : the curved road cut-slope site where normal gabion system was established ($7,911cm^3$); the control site ($7,632cm^3$); the straight road cut-slope site where normal gabion system was established ($7,301cm^3$); the curved road cut-slope site where the new gabion system was established ($5,684cm^3$); and the straight road cut-slope site where the new gabion system ($5,325cm^3$). Therefore, the result shows that the new gabion system is more effective than the normal gabion system to reduce erosion amount from forest ! road cut-slopes. During the study period, vegetation coverages of the straight and curved road cut-slope site where the new gabion system was established were about 45% and about 36%, so average vegetation coverage of the sites where the new gabion systems was established was higher than the sites where the normal gabion systems was established. Therefore, it was concluded that the new gabion system can be more effective for cut-slope revegetation.

Evaluation and Estimation of Sediment Yield under Various Slope Scenarios at Jawoon-ri using WEPP Watershed Model (WEPP Watershed Version을 이용한 홍천군 자운리 농경지의 경사도에 따른 토양유실량 평가)

  • Choi, Jae-Wan;Lee, Jae-Woon;Lee, Yeoul-Jae;Hyun, Geun-Woo;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.693-697
    • /
    • 2009
  • Physically-based WEPP watershed version was applied to a watershed, located at Jawoon-ri, Gangwon with very detailed rainfall data, rather than daily rainfall data. Then it was validated with measured sediment data collected at the sediment settling ponds and through overland flow. The $R^2$ and the EI for runoff comparisons were 0.88 and 0.91, respectively. For sediment comparisons, the $R^2$ and the EI values were 0.95 and 0.91. Since the WEPP provides higher accuracies in predicting runoff and sediment yield from the study watershed, various slope scenarios (2%, 3%, 5.5%, 8%, 10%, 13%, 15%, 18%, 20%, 23%, 25%, 28%, 30%) were made and simulated sediment yield values were analyzed to develop appropriate soil erosion management practices. It was found that soil erosion increase linearly with increase in slope of the field in the watershed. However, the soil erosion increases dramatically with the slope of 20% or higher. Therefore special care should be taken for the agricultural field with higher slope of 20% or higher. As shown in this study, the WEPP watershed version is suitable model to predict soil erosion where torrential rainfall events are causing significant amount of soil loss from the field and it can also be used to develop site-specific best management practices.

  • PDF

Analysis on the Rainfall Driven Slope Failure Adjacent to a Railway : Flume Tests (강우로 인한 철도 연변사면의 활동분석 : 실내모형실험)

  • SaGong Myung;Kim Min-Seok;Kim Soo-Sam;Lee In-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.83-91
    • /
    • 2006
  • Recently, the intensive rainstorm possibly induced by global warming plays a key role on the instability of railway adjacent slopes. The instability of slopes results as covering and loss of railway lines induced by slided soil mass. According to the site investigation on the failed slopes triggered by rainfall, low types of slope failure were observed: shallow, intermediate, gully erosion, and soil-rock interface failures. The observation reveals the different characteristics of slope failure depending on the thickness of soil layer, morphological features of slope, etc. Based upon the observations, flume tests were conducted to analyze the sliding mechanism of each failure. The variables of flume test are soil layer thickness, rainfall intensity, and morphology of slope under the constant condition of the percentage of fine, initial soil moisture content, slope angle and compaction energy. Test results show that shallow failure was mostly observed from the surface of the slope and caused by the soil erosion; in addition, compared to the other types of failure, the occurrence of initial erosion is late, however, the development of erosion is fast. In gully erosion failure, the collected water from the water catchment area helps erosion of the upper soil layer and transfer of residual corestone, which impedes the erosion process once the upper soil layers are eroded and corestone are exposed. The soil-rock interface failure shows the most fast initial erosion process among the failure types. Interestingly, the common feature observed from the different types of failure was the occurrence of the initial deformation near the toe of slopes which implies the existence of surbsurface flow along the downslope direction.

An Applied Case to the Slope Revegetation Technology of Biological Engineering Regarding Nutritional Propagation - In the case of sandy cut-slope - (버드나무의 영양번식을 이용한 생물공학적 사면녹화공법의 적용사례 - 토사로 구성된 절토면을 대상으로 -)

  • Kim, Hyea-Ju;Lee, Joon-Heon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • The slope revegetation methods in Korea are generally the hydroseeding mixed with perennial herbs, soil, fibers, and fertilizer in consideration of scenic landscape rather than ecological and engineering effect. But perennial herbs can't protect the slope from deep surface erosion and they are not tall enough to create the original naturalness at the boundary parts of existing woodlands. This study is about the slope revegetation method using nutritional propagation capacity of plants and the experimental construction was carried out on the cut-slope of Yongin Hoam C.C. We dug several trenches to a depth of 80cm and at intervals of 150cm from each other. After placing various kinds of live branches(Salix species) into the trench, we backfilled with the excavated soils and finally sprayed water mixed with soil-stabilizer, fertilizer. As six months passed, we made a vegetation research and check the slope surface erosion. Vegetation research was performed in examining the frequency of each block using transect method. 31 kinds of plant species appeared in total area($113.6m^2$) and the dominant species are Setaria viridis, Artemisia rubripes, Persicaria pubescens, Plantago asiatica, Cyperus amuricus, Commelina communis. Among the examined blocks, '아', the top part of the slope, showed the ratio of 1.4 as the highest Alpha-diversity. With regard to life form, therophytes were shown dominant distribution of 58% of total species and neophytes relatively low distribution of 16%. It can be estimated that there is no ecological stabilization of this slope, because of ruderal species' occupation of 74% in total area. Regarding the slope stabilization, the serious surface erosion didn't take place in spite of heavy rainfall this year, but a little surface erosion took place at the block where no other species coming from outside of the site were found.

  • PDF