• 제목/요약/키워드: Slop angle

검색결과 26건 처리시간 0.016초

다양한 배관 경사각도 및 중력조건에서의 층상류 유동양식 예측 (The Prediction of Stratified Flow Pattern in a Variable Tube Inclinations and Gravity Conditions)

  • 최부홍
    • 해양환경안전학회지
    • /
    • 제14권4호
    • /
    • pp.339-345
    • /
    • 2008
  • 기름과 가스 수송 라인 및 선박 내에 설비된 유체 기계들에 관련된 파이프 내에 층상류 흐름이 존재할 수 있다. 이 때문에 수평 혹은 작은 경사 파이프 내에 발생할 수 있는 층상류 흐름을 예측하기 위한 많은 이론과 상관식이 제시되었다. 기존 연구들은 각 상의 물성, 점성, 밀도 및 파이프의 기하학적 형상 등이 층상류 흐름에 주는 효과에 관한 것이 대부분이고, 중력의 크기 및 파이프의 큰 경사 기울기에 관한 연구성과는 매우 드문 실정이다. 따라서 본 연구에는 중력크기 및 파이프 경사도 변화가 층상류 발생 조건에 미치는 영향에 대해 이론적 연구가 수행되었다. 또한 본 해석을 통하여 0.17g 및 0.33g 조건에서는 비록 수직상향 흐름일지라도 매우 낮은 액체상의 유량조건에서는 층상류 흐름이 존재할 수 있음을 알 수 있었다.

  • PDF

최적 타이어 힘 분배를 이용한 6WD/6WS 차량의 등판 주행 성능 향상 (Improvement of Hill Climbing Ability for 6WD/6WS Vehicle using Optimum Tire Force Distribution Method)

  • 김상호;김창준;한창수
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1523-1531
    • /
    • 2011
  • 본 다축 차량은 험지와 야전에서 높은 이동성 때문에 비포장도로를 주행해야 하는 군용차량으로 사용된다. 특히 군용차량은 군 요구 사항에 의거 기본적으로 60% 경사로에서 안정적인 등판 성능을 지녀야 한다. 따라서 본 논문은 최적 타이어 힘 분배 방법을 통한 6WD/6WS차량의 등판능력 향상을 다루었다. 경사로 등판 시 사용할 최적 타이어 힘 분배 방법을 위하여 운전자로부터, 목표로 하는 종 방향 힘과 횡 방향 힘, 요 모멘트를 계산하였고, 마찰 원이론과 목적함수에 따른 최적화 된 토크가 각 륜에 분배되었다. 알고리즘 성능을 확인하기 위해서, 트럭심 소프트웨어를 이용하여 시뮬레이션 하였고, 비교를 위하여 2대의 차량을 제안하였다. 한 대의 차량은 최적타이어 힘 분배 방법이 적용되었고, 나머지 한 대는 궤도 차량과 같은 균등 힘 분배 방법이 적용되었다. 경사로에서 등판능력은 최적 타이어 힘 분배 방법에 의해서 향상 되어졌다.

월파수류형 파력발전구조물의 상부 사면 설계변수에 따른 수력학적 효율 영향 연구 (The Effect of Hydraulic Efficiency on the Design Variables of an Overtopping Wave Energy Converter)

  • 안성환;김근곤;이종현
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.168-174
    • /
    • 2022
  • 월파된 파도를 이용한 파력발전시스템을 월파수류형 파력발전기 OWEC(Overtopping Wave Energy Converter)라고 한다. OWEC의 성능은 발전 시스템은 특성상 파도의 파고와 주기의 영향을 받는다. 파도는 해양에 따라 파고, 주기, 파도 방향 등의 특성이 다르고 이러한 파도의 다양한 특성 때문에 OWEC는 안정적인 전력을 생산하기 어렵다. 따라서 각 바다의 특성에 따른 OWEC의 적절한 형상에 관한 연구가 필요하다. 본 연구에서는 SPH(Smoothed Particle Hydrodynamics) 입자법을 사용하여 OWEC의 램프 설계가 hydraulic efficiency에 미치는 영향을 확인했다. 총 10개의 모델을 설계하였으며, 선택된 매개변수에 따라 램프의 설계 파라미터를 선택하고 사면의 형상을 변경하여 시뮬레이션을 수행하였다. 해석 결과로부터 구한 유량을 기초로 hydraulic efficiency를 산출하였다. 계산된 hydraulic efficiency를 바탕으로 각 변수가 사면의 형상에 따른 월파 성능에 미치는 영향을 확인하였다. 본 연구에서는 특정 해역에 따른 OWEC 램프의 적절한 형상에 대한 방향을 제시하였다.

패턴분류를 통한 산지사면의 위험도 평가 기법 (Slopes Risk Assessment Techniques through Pattern Classification)

  • 김민섭;김진영
    • 지질공학
    • /
    • 제25권2호
    • /
    • pp.189-199
    • /
    • 2015
  • 우리나라의 화강풍화토 지반의 사면붕괴 형태는 대부분 절토사면에서 발생하는 경우가 많고 풍화작용의 영향을 받는 표층부 지반 안정성을 파악하는 것이 중요하다. 표층부에서 채취한 시료를 이용하여 기본 물성시험 및 점착력과 내부마찰각 시험을 수행하였고, 현장조사 결과를 토대로 자연사면의 안정성 검토를 수행여 형태별 패턴(쐐기형, 무한사면형, 유한사면형)을 분류 하였다. 또한 분류된 패턴별로 수치해석을 수행하였으며 그 결과를 토대로 최소안전율과 사면경사각의 관계를 개괄적인 안정도 추정에 기초 자료로서 제공하고자 하였다. 본 연구에서 산정된 강도정수들은 몇 개의 특정사면의 경우에 대한 것으로서 모든 사면의 안정해석에 그대로 적용 가능한 것은 아니다. 그러나 현실적으로 모든 경사면과 강도정수에 대해서 실험을 실시하는 것은 어려울 뿐만 아니라 비용면에서도 불가능한 실정이다. 따라서 사면안정에 영향을 미치는 단위중량, 점착력, 내부마찰각의 변화와 사면 경사각의 변화에 따른 위험도 평가를 정립하기 위해서는 수치모델링과 같은 방법을 사용하여 현장조건의 다양한 변화에 대응할 수 있는 패턴별 위험도 평가기준이 작성된다면 대단히 유용할 것이다. 따라서 대표적인 사면형태(TYPE-I~IV)와 사면경사각에 강도정수를 적용하여 최소 안전율을 제시한다면 자연사면의 간이 안정해석이 가능 할 것으로 사료된다.

3차원(次元) 사면(斜面) 안정해석(安定解析)에 관한 확률론적(確率論的) 연구(研究) (A Three-Dimensiomal Slope Stability Analysis in Probabilistic Solution)

  • 김영수
    • 대한토목학회논문집
    • /
    • 제4권3호
    • /
    • pp.75-83
    • /
    • 1984
  • 사면(斜面)의 3차원(次元) 파괴(破壞)의 신뢰성(信賴性) 해석(解析)에 안전율(安全率) 대신 파괴확률(破壞確率)이 사용(使用)되었다. 강도정수(强度定數)는 정규분포(正規分布)와 베타분포(分布)로 가정하였고 특정(特定)한 신뢰도(信賴度)와 최우추정법(最尤推定法)에 의하여 구간추정(區間推定) 하였다. 정규분포(正規分布)와 베타분포(分布)의 무작위변수(無作爲變數)는 중심극한정리(中心極限定理)와 Rejection방법(方法)에 따라 일양분포변환방법(一樣分布變換方法)을 사용(使用)하여 발생(發生)시켰고 몬테칼로방법(Monte-Carlo Method)에 의한 파괴확률(破壞確率)은 다음과 같이 정의(定義)된다. $P_f=M/N$ N: 시행회수(施行回數) M: 파괴회수(破壞回數) 본(本) 연구(硏究) 결과(結果)는 다음과 같다. 1. $F_3$$F_2$보다 일반적으로 더 컸으나 작은 경우도 나타났다. 2. $F_3/F_2$의 비(比)는 c, ${\phi}$와 3차원(次元) 파괴(破壞)형상 그리고 경사에 따라 민감하나 흙의 단위중량에는 그렇지 않았다. 3. 어떤 완전율(安全率)에 대한 파괴확률(破壞確率)은 배타분포(分布)가 정규분포(定規分布)보다 대체로 크게 나타났다. 4. 어떤 특정(特定)한 사면파괴(斜面破壞)형상과 토질조건(土質條件)에 대하여 허용안전율(許容安全率) $FS_a=1.25$에 해한 $P_f$는 0.23 (정규분포(正規分布)), 0.29(베타분포(分布))로 나타났다.

  • PDF

긴구배수로 감세공의 Filp Bucket형 이용연구 (Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel)

  • 김영배
    • 한국농공학회지
    • /
    • 제13권1호
    • /
    • pp.2206-2217
    • /
    • 1971
  • 본연구(本硏究)는 Dam 또는 여수토(餘水吐) 방수로등(放水路等) 급구배수로(急勾配水路)에 고속(高速)으로 유하(流下)되는 물을 감세처리(減勢處理)하기 (爲)한 감세공형식중(減勢工型式中) 보다도 구조(構造)가 간단(簡單)하고 시공(施工)이 용역(容易)하며 경제성(經濟性)이 높은 Flip Bucket 형감세공(型減勢工)에 의(義)하여 수리특성(水理特性)에 따른 일반적(一般的) 적용조건(適用條件)과 설계시공(設計施工)의 발전(發展)을 도모(圖謀)하기 위(爲)하여 연구(硏究)한 것으로서 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. Flip Bucket의 수리특성(水理特性)과 일반적(一般的) 적용조건(適用條件) Flip Bucket는 일반적(一般的)으로 다음과 같은 조건(條件)을 갖일 때에 채용(採用)할 수 있다. 가. 하류하천(下流河川)의 수위(水位)가 얕어서 도수형(跳水型) 감세공법(減勢工法)을 이용(利用)하며는 막대(莫大)한 공사비(工事費)를 요(要)하게 될 때 나. 하류하천(下流河川)의 하상(河床)이 안정(安定)할 수 있는 양질(良質)의 암반(岩盤)일 경우 다. 하류하천(下流河川)은 여수토(餘水吐) 방수로(放水路)의 중심선(中心線)에 연(沿)하여 적어도 전수두(全水頭)의 $3{\sim}5$배(倍)되는 거리까지는 하심(河心)이 거이 직선(直線)인 여건(與件)에 있을 경우 라. 방사수맥(放射水脈)의 낙하지점(落下地點)을 중심(中心)으로 해서 주위(周圍)에 민가(民家), 경지(耕地), 중요시설물등(重要施設物等)이 없고 수맥낙하(水脈落下)로 인(因)하여 생기는 소음(騷音), 토사붕양(土砂崩壤), 물방울등(等)으로 피해(被害)를 받을 염려(念慮)가 없을 경우 2. 설계(設計) 및 시공상(施工上)의 적용사항(適用事項) 1항(項)과 같은 현지조건(現地條件)을 갖이고 실제(實際) Flip Bucket 형(型)으로 설계(設計) 또는 시공(施工)을 할 경우 고려(考慮)하여야 할 사항(事項)은 가. Bucket의 반경(半徑)(R)은 $R=7h_2$로 적용(適用)이 가능(可能)하다. ($h_2$: Bucket 시점(始點)의 평균수심(平均水深) 나. 본형식(本型式)은 한계지면이하(限界施面以下) 방수로(放水路)의 구배(勾配)가 $0.25<\frac{H}{L}<0.75$의 수로(水路)에서만 채용(採用)한다. 다. 방사수맥(放射水脈)은 가급적(可及的) 하상면(河床面)에 직각(直角)에 가까운 각도(角度)로 낙하(落下)시켜야 하며 그러기 위(爲)해서는 수맥(水脈)을 높이 또는 멀리 방사(放射)시켜야 한다. 상기목적(上記目的)을 만족(滿足)시키는 Flip의 앙각(仰角)은 $\theta=30^{\circ}{\sim}40^{\circ}$를 적용(適用)하는 것이 좋다. 라. 상기(上記) 가${\sim}$다항(項)을 적용(適用)했을 때 유량별(流量別) 방사수맥(放射水脈)의 낙하거리(落下距離)는 그림-4.1에 의(依)하여 쉽게 추정(推定)할 수 있다.(단 실물(實物)에 대(對)한 제량(諸量)의 환산(換算)은 표(表-3.2)에 제시(提示)된 Froude 상사율(相似律)을 적용(適用)할 것) 마. Bucket 부(部)에 Chute Blocks를 설치(設置)하는 것은 방사수맥(放射水脈)의 낙하범위(落下範圍)를 확장(擴張), Energy를 분배(分配)시켜 주므로 하류하상(下流河床)의 세굴심(洗掘深)을 감소(減少)시키는 이점(利點)은 있으나 소맥낙하거리(小脈落下距離)는 다소(多少) 단축(短縮)되는 경향(傾向)이 있다. 바. 수맥낙하점(水脈落下點)에는 세굴(洗掘)에 의(依)한 깊은 Water Cushion을 형성(形成)한다. 최종적(最終的)으로 도달(到達)하는 Water Cushion의 깊이는 하상구성재료(河床構成材料)의 조성(組成)과 재질(材質)에는 거이 무관(無關)하며 단위폭당(單位幅當)의 유량(流量)과 전수두(全水頭)에 따라 소요(所要) 깊이까지 세굴(洗掘)된다. 사. 빈도(頻度)가 잦은 소유량(小流量)에서는 수맥(水脈)의 낙하거리(落下距離)가 단축(短縮)되어 Flip Bucket 하류단(下流端) 직하류(直下流)를 세굴(洗掘)하게 되므 Bucket로 하류단(下流端)은 견고(堅固)한 암반(巖盤)에 충분(充分)한 깊이까지 삽입절연(揷入絶緣)시켜 수맥하부(水脈下部)의 공기유통(空氣流通)을 원활(圓滑)하게 하므로서 Cavitation을 방지(防止)할 수 있다. 지하벽(直下壁)은 보통(普通) Bucket 말단(末端)에서 약(約) $0.3{\sim}0.5m$ 정도(程度)는 수평(水平)으로 하고 수평(水平)과 내각(內角)이 $120^{\circ}{\sim}130^{\circ}$되게 절단(切斷)하여 적당(適當)한 곳에서 수직(垂直)으로 하여 암반(巖盤)에 견고(堅固)히 절연(絶緣)시킨다. 아. 하상(河床)에 돌입(突入)한 고속(高速) Jet는 수두(水頭)의 크기에 따라 막대(莫大)한 Energy의 일부(一部)를 함유(含有)한채 하상면상(河床面上)을 유하(流下)하게 되므로 이 영향(影響)을 받는 하류제방(下流堤防)에는 상당구간(相當區間)까지 사석(捨石) 또는 기타(其他)의 방호조치(防護措置)를 강구(講究)해야 한다. 자. 낙하지점(落下地點)의 조건(條件)으로 보아 자연낙하지점(自然落下地點)보다 더욱 양호(良好)한 지점(地點)이 주위(周圍)에 구비(具備)되어 있을 경우에는 별도(別途)로 수리실험(水理實驗)을 통(通)하여 수맥(水脈)의 변이방법(變移方法)을 강구(講究)해야 한다. 차. 수로(水路)의 중심선(中心線)이 만곡(灣曲)을 갖던가 또는 본연구(本硏究) 범위(範圍)에서 제외(除外)된 구조물(構造物)에서 본형식(本型式)을 계획(計劃)할 때는 별도(別途)로 수리실험(水理實驗)을 행(行)하여야 한다.

  • PDF