• Title/Summary/Keyword: Slit-camera

Search Result 102, Processing Time 0.03 seconds

A Study on Depth Data Extraction for Object Based on Camera Calibration of Known Patterns (기지 패턴의 카메라 Calibration에 기반한 물체의 깊이 데이터 추출에 관한 연구)

  • 조현우;서경호;김태효
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.173-176
    • /
    • 2001
  • In this thesis, a new measurement system is implemented for depth data extraction based on the camera calibration of the known pattern. The relation between 3D world coordinate and 2D image coordinate is analyzed. A new camera calibration algorithm is established from the analysis and then, the internal variables and external variables of the CCD camera are obtained. Suppose that the measurement plane is horizontal plane, from the 2D plane equation and coordinate transformation equation the approximation values corresponding minimum values using Newton-Rabbson method is obtained and they are stored into the look-up table for real time processing . A slit laser light is projected onto the object, and a 2D image obtained on the x-z plane in the measurement system. A 3D shape image can be obtained as the 2D (x-z)images are continuously acquired, during the object is moving to the y direction. The 3D shape images are displayed on computer monitor by use of OpenGL software. In a measuremental result, we found that the resolution of pixels have $\pm$ 1% of error in depth data. It seems that the error components are due to the vibration of mechanic and optical system. We expect that the measurement system need some of mechanic stability and precision optical system in order to improve the system.

  • PDF

AKARI OBSERVATIONS OF THE INTERSTELLAR MEDIUM

  • Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.187-193
    • /
    • 2012
  • AKARI has 4 imaging bands in the far-infrared (FIR) and 9 imaging bands that cover the near-infrared (NIR) to mid-infrared (MIR) contiguously. The FIR bands probe the thermal emission from sub-micron dust grains, while the MIR bands observe emission from stochastically-heated very small grains and the unidentified infrared (UIR) band emissions from carbonaceous materials that contain aromatic and aliphatic bonds. The multi-band characteristics of the AKARI instruments are quite efficient to study the spectral energy distribution of the interstellar medium, which always shows multi-component nature, as well as its variations in the various environments. AKARI also has spectroscopic capabilities. In particular, one of the onboard instruments, Infrared Camera (IRC), can obtain a continuous spectrum from 2.5 to $13{\mu}m$ with the same slit. This allows us to make a comparative study of the UIR bands in the diffuse emission from the 3.3 to $11.3{\mu}m$ for the first time. The IRC explores high-sensitivity spectroscopy in the NIR, which enables the study of interstellar ices and the UIR band emission at $3.3-3.5{\mu}m$ in various objects. Particularly, the UIR bands in this spectral range contain unique information on the aromatic and aliphatic bonds in the band carriers. This presentation reviews the results of AKARI observations of the interstellar medium with an emphasis on the observations of the NIR spectroscopy.

Local Minimum Free Motion Planning for Mobile Robots within Dynamic Environmetns

  • Choi, Jong-Suk;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1921-1926
    • /
    • 2003
  • We build a local minimum free motion planning for mobile robots considering dynamic environments by simple sensor fusion assuming that there are unknown obstacles which can be detected only partially at a time by proximity sensors and can be cleaned up or moved slowly (dynamic environments). Potential field is used as a basic platform for the motion planning. To clear local minimum problem, the partial information on the obstacles should be memorized and integrated effectively. Sets of linked line segments (SLLS) are proposed as the integration method. Then robot's target point is replaced by virtual target considering the integrated sensing information. As for the main proximity sensors, we use laser slit emission and simple web camera since the system gives more continuous data information. Also, we use ultrasonic sensors as the auxiliary sensors for simple sensor fusion considering the advantages in that they give exact information about the presence of any obstacle within certain range. By using this sensor fusion, the dynamic environments can be dealt easily. The performance of our algorithm is validated via simulations and experiments.

  • PDF

THE DIFFUSE NEAR-INFRARED BACKGROUND SPECTRUM FROM AKARI

  • Kohji, Tsumura;Toshio, Matsumoto;Shuji, Matsuura;Itsuki, Sakon;Takehiko, Wada
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.321-326
    • /
    • 2017
  • We analyzed spectral data of the astrophysical diffuse emission obtained with the low-resolution spectroscopy mode on the AKARI InfraRed Camera (IRC) in the $1.8-5.3{\mu}m$ wavelength region. Advanced reduction methods specialized for slit spectroscopy of diffuse sky spectra have been developed, and a catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was constructed. Using this catalog, two other major foreground components, the zodiacal light (ZL) and the diffuse Galactic light (DGL), were separated and subtracted by taking correlations with ZL brightness estimated by the DIRBE ZL model and with the $100{\mu}m$ dust thermal emission, respectively. The isotropic emission was interpreted as the extragalactic background light (EBL), which shows significant excess over the integrated light of galaxies at <$4{\mu}m$.

IGRINS MIRROR MOUNT DESIGN FOR FIVE FLAT MIRRORS (다섯 개의 평면경을 위한 IGRINS 미러 마운트 설계)

  • Oh, Jae Sok;Park, Chan;Kim, Kang-Min;Chun, Moo-Young;Yuk, In-Soo;Oh, Heeyoung;Jeong, Ueejeong;Yu, Young Sam;Lee, Hanshin;Lee, Sungho
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.17-29
    • /
    • 2015
  • The IGRINS is a near infrared high resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. We present design and fabrication of the optomechanical mount for the five mirrors, i.e., an input fold mirror, a slit mirror, a dichroic, and two camera fold mirrors. Based on the structure analysis and the thermal analysis of finite element methods, the optomechanical mount scheme satisfies the mechanical and the thermal design requirements given by the optical tolerance analysis. The performance of the fabricated mirror mounts has been verified through three IGRINS commissioning runs.

IGRINS Mirror Mount Design for Five Flat Mirrors

  • Oh, Jae Sok;Park, Chan;Kim, Kang-Min;Chun, Moo-Young;Yuk, In-Soo;Yu, Young Sam;Oh, Heeyoung;Jeong, Ueejeong;Lee, Hanshin;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.91.2-91.2
    • /
    • 2014
  • A near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS) has been jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. The compact white-pupil design of the instrument optics includes five cryogenic flat mirrors including a slit mirror, an input fold mirror, a dichroic mirror, and H&K camera fold mirrors. In this study, we introduce the optomechanical mount designs of the five cryogenic mirrors. In order to meet the structural stability and thermal requirements of the mount models, we conducted the design work with the aid of 3-dimensional computer modeling and the finite element analysis (FEA) method. We also present the actual fabricated parts and assemblies of the mounts and mirrors as well as their CAD models.

  • PDF

Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction (경계층 유동의 흡입에 의한 수직충격파 진동저감)

  • Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

IGRINS 광학 모듈의 온도 및 진공 환경 변화에 따른 광학적 특성

  • Go, Gyeong-Yeon;Han, Jeong-Yeol;O, Hui-Yeong;Na, Ja-Gyeong;Yuk, In-Su;Park, Chan;Lee, Seong-Ho;Cheon, Mu-Yeong;Jaffe, Dan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.203.2-203.2
    • /
    • 2012
  • IGRINS는 R=40,000의 해상도를 가지고 130K의 저온과 진공 환경에서, 한 번에 H와 K밴드 영역을 동시에 관측할 수 있도록 설계 된 적외선 분광기이다. 이 분광기에는 망원경 초점을 슬릿에 전달하는 IO (Input relay Optics) 모듈과 슬릿을 이미징하는 SVC (Slit Viewing Camera) 모듈 등 2개의 광학모듈이 있다. 광학모듈은 상온 및 저온(130K) 등 온도 변화와 진공 및 비진공 등 환경의 변화를 겪게 되는데, 이 과정에서 변화하는 광학성능을 시뮬레이션과 실험결과로 추적하였다. 시뮬레이션은 ZEMAX 소프트웨어를 사용하였고, 간섭계는 Phasecam 5030을 사용하였으며, IGRINS test dewar 내에 모듈을 설치하여 1,000 class급 청정도 환경에서 WFE를 측정 하였다. Test dewar는 빛이 통과할 수 있는 2개의 윈도우가 있는데, 윈도우는 test dewar 내부와 외부의 진공 및 온도 등 환경 변화에 따라 물리적인 변화가 발생하여 최종 WFE값에 영향을 준다. 본 연구에서는 IGRINS 광학모듈이 진공 및 냉각 상태에서 WFE가 변화하는 양상을 살펴봄으로써, 환경 변화에 따른 광학적 효과를 정량적으로 살펴본 결과를 소개할 것이며, 이 결과는 IGRINS 전체 광학계의 조립 및 정렬 시 환경 변화의 효과를 미리 예측할 수 있도록 하는 자료로 활용될 것이다.

  • PDF

OH-and CH-Radical Chemiluminescence Characteristics in the Spray Combustion of Ultransonically Atomized Kerosene (초음파에 의해 무화된 케로신 분무연소에서의 OH 라디칼 및 CH 라디칼 자발광 특성)

  • Kim, Min Cheol;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.72-79
    • /
    • 2018
  • An experimental study was performed to investigate the chemiluminescence characteristics in the spray combustion of ultransonically atomized kerosene. The radical intensity of the spray flame was measured using an ICCD camera and the amount of fuel consumed was obtained by a precise flow-rate measurement technique during combustion. Fuel consumption increased linearly with the increase in carrier-gas flow rate, and typical group combustion, which is a characteristic of spray combustion, was observed. It was found from the analysis of chemiluminescence that the maximum emission intensities of OH and CH radicals decrease, and they move downstream resulting in the increase in a vivid reaction zone as the spray flow rate increases.

Ebert-Fastie spectrograph using the Transformable Reflective Telescope kit

  • Ahn, Hojae;Mo, Gyuchan;Jung, Hyeonwoo;Choi, Junwhan;Kwon, Dou Yoon;Lee, Minseon;Kim, Dohoon;Lee, Sumin;Park, Woojin;Lee, Ho;Park, Kiehyun;Kim, Hyunjong;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.40.4-40.4
    • /
    • 2020
  • Kyung Hee university invented the Transformable Reflective Telescope (TRT) for optical experiment and education. The TRT kit can transform into three optical configurations from Newtonian to Cassegrain to Gregorian by exchanging the secondary mirror. We designed the Ebert-Fastie spectrograph as an extension of the TRT kit. The primary mirror of the TRT kit serves as both collimator and camera lens, and the reflective grating as the dispersing element is placed along the optical axis of the primary mirror. We designed and fabricated the grating holder and the source units using 3D printer. Baffle was also fabricated to suppress the stray light, which was reduced by 83%. The spectrograph can observe the optical wavelength range (4000Å~7000Å). Measured resolving power (R=λ/Δλ) was ~700 with slit width of 0.18mm. The spectrograph is optimized for f/24, and the spectral pixel scale is 0.49Å/pixel with Canon 550D detector. We present the sample spectra of discharged Ne, Ar and Kr gases. The flexible setting and high performance make this spectrograph a useful tool for education and experiment.

  • PDF