• 제목/요약/키워드: Slit-camera

검색결과 102건 처리시간 0.033초

Defect Length Measurement using Underwater Camera and A Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.746-751
    • /
    • 2003
  • A method of measuring the length of defects on the wall of the spent nuclear fuel pool using the image processing and a laser slit beam is proposed. Since the defect monitoring camera is suspended by a crane and hinged to the crane hook, the camera viewing direction can not be adjusted to the orientation that is exactly perpendicular to the wall. Thus, the image taken by the camera, which is horizontally rotated along the axis of the camera supporting beam, is distorted and thus, the precise length can not be measured. In this paper, by using the LASER slit beam generator, the horizontally rotated angle of the camera is estimated. Once the angle is obtained, the distorted image can be easily reconstructed to the image normal to the wall. The estimation algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the laser slit beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect taken at arbitrary rotated angle can be reconstructed to an image normal to the wall. From the result of a series of experiments, the accuracy of the defect is measured within 0.6 and 1.3 % error bound of real defect size in the air and underwater, respectively under 30 degree of the inclined angle of the laser slit beam generator. Also, the error increases as the inclined angle increases upto 60 degree. Over this angle, the defect length can not be measured since the defect image disappears. The proposed algorithm enables the accurate measurement of the defect length only by using a single camera and a laser slit beam.

  • PDF

Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Chan Hyeong;Shin, Dong Ho;Jeong, Jong Hwi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.533-538
    • /
    • 2019
  • The mechanical-collimation imaging is the most mature technology in prompt gamma (PG) imaging which is considered the most promising technology for beam range verification in proton therapy. The purpose of the present study is to compare the performances of two mechanical-collimation PG cameras, knife-edge (KE) camera and multi-slit (MS) camera. For this, the PG cameras were modeled by Geant4 Monte Carlo code, and the performances of the cameras were compared for imaginary point and line sources and for proton beams incident on a cylindrical PMMA phantom. From the simulation results, the KE camera was found to show higher counting efficiency than the MS camera, being able to estimate the beam range even for $10^7$ protons. Our results, however, confirmed that in order to estimate the beam range correctly, the KE camera should be aligned, at least approximately, to the location of the proton beam range. The MS camera was found to show lower efficiency, being able to estimate the beam range correctly only when the number of the protons is at least $10^8$. For enough number of protons, however, the MS camera estimated the beam range correctly, errors being less than 1.2 mm, regardless of the location of the camera.

레이저 슬릿빔의 경사각과 카메라 자세 추정 알고리즘을 이용한 벽면 결함 측정 (Measurement of Defects on the Wall by use of the Inclination Angle of Laser Slit Beam and Position Tracking Algorithm of Camera)

  • 김영환;송상호;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.339-339
    • /
    • 2000
  • In this parer, a method of measuring the size of defects on the wall and restructing the defect image of 3-dimension is developed based on the tracking algorithm of a camera position which uses the inclination angle of line slit beam for overcoming the difficulty of the corresponding problem identifying the image point in the both image. In the experiments, an algorithm for estimating the horizontal angle of CCD camera is presented and validated by applying it to the measurement of area and length under the variations of both the distance and the angle of CCD camera. And its performance is compared to that of the rotating and mapping method of image which has the Euclidian distance.

  • PDF

Defects Length Measurement using an Estimation Algorithm of the Camera Orientation and an Inclination Angle of a Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup;Kang, E-Sok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1452-1457
    • /
    • 2004
  • In this paper, a method of measuring the length of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation which uses the declination angle of a laser slit beam. The estimation algorithm of the horizontally inclined angle of CCD camera adopts a 3-dimensional coordinate transformation of the image plane where both the laser beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed to an image normal to the wall. From the result of a series of experiments, the measuring accuracy of the defect is measured within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary horizontally inclined angle to the image normal to the wall and thus, it enables the accurate measurement of the defect lengths only by using a single camera and a laser slit beam.

  • PDF

레이저 슬릿 빔의 경사각과 카메라 자세 추정 알고리듬을 이용한 벽면결함 길이측정 (Defects Length Measurement Using an Estimation Agorithm of the Camera Orientation and an Inclination Angle of a Laser Slit Beam)

  • 김영환;윤지섭;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제8권1호
    • /
    • pp.37-45
    • /
    • 2002
  • A method of measuring the length of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation, which uses the declination angle of a laser slit beam. The estimation algorithm of the horizontally inclined angle of CCD camera adopts a 3-dimensional coordinate transformation of the image plane where both the laser beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed as an image normal to the wall. From the result of a series of experiments, the measuring accuracy of the defect is measured within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary horizontally inclined angle as the image normal as the wall and thus, it enables the accurate measurement of the defect lengths by using a single camera and a laser slit beam.

레이저 슬릿빔과 신경망을 이용한 3차원 영상인식 (3-D Image Processing Using Laser Slit Beam and Neural Networks)

  • 김병갑;강이석;최경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.118-122
    • /
    • 1997
  • This paper presents a 3d image processing which uses neural networks to combine a 2D vision camera and a laser slit beam. A laser slit beam from laser source is slitted by a set of cylindrical lenses and the line image of the slit beam on the object is used to estimate the object parameters. The neural networks allow to get the 3D image parameters such as the size, the position and the orientation form the line image without knowing the camera intrinsic parameters.

  • PDF

슬릿광 주사방법에 의한 자유곡면의 삼차원형상 측정 (3-Dimensional Profile Measurement of Free-Formed Surfaces by Slit Beam Scanning Topography)

  • 박현구;김승우;박준호
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1202-1207
    • /
    • 1993
  • 본 논문에서는 삼차원형상 측정의 슬릿광 주사방법(slit beam scanning topography)의 형상측정에 응용에 대해 기술한다. 이는 광학적인 방법으로 레이저 평면광을 물체에 주사하여 얻어지는 변형된 광궤적으로부터 광삼각법(optical triangulation)과 컴퓨터비젼 기술을 응용하여 삼차원형상을 측정한다. 기존의 방법 들과 비교하여 슬릿광 주사방법은 고속의 삼차원측정이 가능하여 검사자동화에 용이 하게 적용될 수 있는 장점을 갖는다. 본 논문에서는 슬릿광 주사방법에 대한 기본원 리를 유도하며, 이를 구현할 수 있는 측정시스템의 설계와 실제 측정예를 통해 본 방법이 갖는 장단점에 관하여 검토한다.

93 대전엑스포 꿈돌이 조각가로보트의 인물형상 측정시스템 (3-D Profile Measurement System of Live Human Faces for the '93 Taejon Expo Kumdori Robot Scupltor)

  • 김승우;박현구;김문상
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.670-679
    • /
    • 1995
  • This paper presents the 3-D profile measurement system of live human faces, which was developed specially for 'KUMDORI sculptor robot' of the '93 Taejon Exposition. '93 Taejon EXPO. The basic principle for measurement adopts the slit beam projection which is a method of measuring 3-D surface profiles using geometric optics between the slit beam and the CCD camera. Since the slit beam projection consumes long measuring time, it is unfit to measure the 3-D profiles of living objects as human. Therefore, the projection type slit beam method which consumes short measuring time is newly suggested. And an algorithm to reconstruct the 3-D profile from the deformed images using finite approximated calibration is suggested and practically implemented. The projection type slit beam method was applied to spectators in a period of '93 Taejon EXPO. The measurement results show that the technique is suitable for 3-D face profile measurement on a living body.

슬릿광 3차원 형상측정에서 측정분해능 최적화를 위한 시스템설계 및 카메라보정 (System Design and Camera Calibration of Slit Beam Projection for Maximum Measuring Accuracy)

  • 박현구;김명철;김승우
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1182-1191
    • /
    • 1994
  • This paper presents an enhanced method of slit beam projection intended for the rapid measurement of 3-dimensional surface profiles of dies and molds. Special emphasis is given to optimizing the design of optical system so that the measuring accuracy can be maximized by adopting two-plane camera calibration together with sub-pixel image processing techniques. Finally, several measurement examples are discussed to demonstrate that an actual measuring accuracy of $\pm$ 0.2 mm can be achieved over the measuring range of 500 mm{\times}300mm{\times}200mm$.

Opto - Mechanical Design of IGRINS Slit-viewing Camera Barrel

  • Oh, Hee-Young;Yuk, In-Soo;Park, Chan;Lee, Han-Shin;Lee, Sung-Ho;Chun, Moo-Young;Jaffe, Daniel T.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). The slit-viewing camera is one of four re-imaging optics in IGRINS including the input relay optics and the H- and K- band spectrograph cameras. Consisting of five lenses and one Ks-band filter, the slit viewing camera relays the infrared image of $2'{\times}2'$ field around the slit to the detector focal plane. Since IGRINS is a cryogenic instrument, the lens barrel is designed to be optimized at the operating temperature of 130 K. The barrel design also aims to achieve easy alignment and assembly. We use radial springs and axial springs to support lenses and lens spacers against the gravity and thermal contraction. Total weight of the lens barrel is estimated to be 1.2 kg. Results from structural analysis are presented.

  • PDF