• Title/Summary/Keyword: Slippage

Search Result 203, Processing Time 0.024 seconds

Traction Control of Mobile Robot Based on Slippage Detection by Angular Acceleration Change (각가속도 변화에 의해 탐지된 슬립에 기반한 주행로봇의 견인력 제어)

  • Choi, Hyun-Do;Woo, Chun-Kyu;Kang, Hyun-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.184-191
    • /
    • 2009
  • The common requirements of rough terrain mobile robots are long-term operation and high mobility in rough terrain to perform difficult tasks. In rough terrain, excessive wheel slip could cause an increase in the amount of dissipated energy at the contact point between the wheel and ground or, even more seriously, the robot could lose all mobility and become trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The proposed traction algorithm is analogous to the stick-slip friction mechanism. The algorithm estimates the slippage of wheels by angular acceleration change, and controls the increase or decrease state of torque applied to wheels Simulations are performed to validate the algorithm. The proposed traction control algorithm yielded a 65.4% reduction of total slip distance and 70.6% reduction of power consumption compared with the standard velocity control method.

A Study on Reactivity of ZnO-CuO Sorbent for Hot Gas Desulfurization (고온 연료가스 정제를 위한 ZnO-CuO 혼성탈황제의 반응 특성연구)

  • Jung, Yong-Kgil;Park, No-Kuk;Jun, Jin Hyuk;Lee, Jong-Dae;Ryu, Si-Ok;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.9 no.4
    • /
    • pp.189-196
    • /
    • 2003
  • ZnO-CuO mixed sorbents for desulfurization in hot gas cleaning process Were prepared and investigation on their characteristics was performed in this study. The rate of sulfidation increased as the amount of copper oxide in the composite sorbent was raised. TPO experiments were carried out to investigate the characteristics of the regeneration of the sorbents with severa1 different ratios of Zno to CuO. Copper sulfate was formed at temperatures above $400^{\circ}C$, while it was decomposed by pyrolysis above $700^{\circ}C$. $SO_2$ slippage due to $CuSO_4$ was observed in the sorbent regenerated at temperatures above $600^{\circ}C$. However, it was not observed when regenerated above $700^{\circ}C$. It was confirmed in the ZnO-CuO mixed sorbent system that CuO suppressed the vaporization of ZnO on the one hand and Zno minimized the $SO_2$ slippage due to CuO on the other hand.

  • PDF

The nonlinear interaction between two resonant waves in a waveguide free-electron laser

  • Nam, Soon-Kwon;Jaichul Yi;Kim, Ki-Bum
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.4
    • /
    • pp.107-111
    • /
    • 2000
  • We extend numerical analysis investigating the waveguide parameter dependency of the two resonant frequencies at the small-signal gain regime in a waveguide free-electron laser to the case that there exists a nonlinear coupling. The properties of the nonlinear interaction between the two resonant waves, one with higher frequency and positive slippage and the another one with lower frequency and negative slippage, are numerically investigated in the high gain regime. The results of numerical work with a set of partial differential equations describing the space and time interaction of the two resonant waves are analyzed.

  • PDF

Method for Feature Extraction of Radar Full Pulses Based on EMD and Chaos Detection

  • Guo, Qiang;Nan, Pulong
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • A novel method for extracting frequency slippage signal from radar full pulse sequence is presented. For the radar full pulse sequence received by radar interception receiver, radio frequency (RF) and time of arrival (TOA) of all pulses constitute a two-dimensional information sequence. In a complex and intensive electromagnetic environment, the TOA of pulses is distributed unevenly, randomly, and in a nonstationary manner, preventing existing methods from directly analyzing such time series and effectively extracting certain signal features. This work applies Gaussian noise insertion and structure function to the TOA-RF information sequence respectively such that the equalization of time intervals and correlation processing are accomplished. The components with different frequencies in structure function series are separated using empirical mode decomposition. Additionally, a chaos detection model based on the Duffing equation is introduced to determine the useful component and extract the changing features of RF. Experimental results indicate that the proposed methodology can successfully extract the slippage signal effectively in the case that multiple radar pulse sequences overlap.

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Development of Myoelectric Hand with Infrared LED-based Tactile Sensor (적외선 소자 기반의 촉각센서를 가진 근전의수 개발)

  • Jeong, Dong-Hyun;Chu, Jun-Uk;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.831-838
    • /
    • 2009
  • This paper proposes an IR (infrared) LED (Light Emitting Diode)-based tactile fingertip sensor that can independently measure the normal and tangential force between the hand and an object. The proposed IR LED-based tactile sensor has several advantages over other technologies, including a low price, small size, and good sensitivity. The design of the first prototype is described and some experiments are conducted to show output characteristics of the proposed sensor. Furthemore, the effectiveness of the proposed sensor is demonstrated through anti-slip control in a multifunction myoelectric hand, called the KNU Hand, which includes several novel mechanisms for improved grasping capabilities. The experimental results show that slippage was avoided by simple force control using feedback on the normal and tangential force from the proposed sensor. Thus, grasping force control was achieved without any slippage or damage to the object.

Static and fatigue behavior of through-bolt shear connectors with prefabricated HFRC slabs

  • He, Yuliang;Zhuang, Jie;Hu, Lipu;Li, Fuyou;Yang, Ying;Xiang, Yi-qiang
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.109-121
    • /
    • 2022
  • Twelve push-out test specimens were conducted with various parameters to study the static and fatigue performance of a new through-bolt shear connector transferring the shear forces of interface between prefabricated hybrid fiber reinforced concrete (HFRC) slabs and steel girders. It was found that the fibers could improve the fatigue life, capacity and initial stiffness of through-bolt shear connector. While the bolt-hole clearance reduced, the initial stiffness, capacity and slippage of through-bolt shear connector increased. After the steel-concrete interface properties were improved, the initial stiffness increased, and the capacity and slippage reduced. Base on the test results, the equation of the load-slip curve and capacity of through-bolt shear connector with prefabricated HFRC slab were obtained by the regression of test results, and the allowable range of shear force under fatigue load was recommended, which could provide the reference in the design of through-bolt shear connector with prefabricated HFRC slabs.

Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice (반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구)

  • 이철호;박종원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.115-122
    • /
    • 1998
  • This paper presents the cyclic seismic performance of slip-critically designed, high-strength bolted-beam splice in steel moment frames. Before the moment connection reaching its ultimate plastic strength, unexpected premature slippage occurred at the slip-critically designed beam splice during the test. The experimentally observed frictional coefficients were as low as about 50% to 60% of nominal(code) value. Nevertheless, the bearing type behavior mobilized after the slippage transferred the increasing cyclic loads successfully, i.e., the consequence of slippage into bearing was not catastrophic to the connection behavior. The test result seems to indicate that the traditional beam splice design basing upon(bolt-hole deducted) effective flange area criterion may not be sufficient in developing the plastic strength of moment connections under severe earthquake loading. New procedure for achieving slip-critical beam splice design is proposed based on capacity design concept.

  • PDF

Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method (분자-연속체 하이브리드 기법을 이용한 구조물이 있는 나노 채널에서의 쿠에트 유동에 대한 수치적 연구)

  • Kim, Youngjin;Jeong, Myunggeun;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.429-434
    • /
    • 2017
  • A molecular-continuum hybrid method was developed to simulate microscale and nanoscale fluids where continuum fluidics cannot be used to predict Couette flow. Molecular dynamics simulation is used near the solid surface where the flow cannot be predicted by continuum fluidics, and Navier-Stokes equations are used in the other regions. Numerical simulation of Couette flow was performed using the hybrid method to investigate the effect of solid-liquid interaction and surface roughness in a nanochannel. It was found that the solid-liquid interaction and surface roughness influence the boundary condition. When the surface energy is low, slippage occurs near the solid surface, and the magnitude of slippage decreases with increase in surface energy. When the surface energy is high, a locking boundary condition is formed. The roughness disturbs slippage near the solid surface and promotes the locking boundary condition.

A displacement solution for circular openings in an elastic-brittle-plastic rock

  • Huang, Houxu;Li, Jie;Rong, Xiaoli;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.489-504
    • /
    • 2017
  • The localized shear and the slip lines are easily observed in elastic-brittle-plastic rock. After yielding, the strength of the brittle rock suddenly drops from the peak value to the residual value, and there are slip lines which divide the macro rock into numbers of elements. There are slippages of elements along the slip lines and the displacement field in the plastic region is discontinuous. With some restraints, the discontinuities can be described by the combination of two smooth functions, one is for the meaning of averaging the original function, and the other is for characterizing the breaks of the original function. The slip lines around the circular opening in the plastic region of an isotropic H-B rock which subjected to a hydrostatic in situ stress can be described by the logarithmic spirals. After failure, the deformation mechanism of the plastic region is mainly attributed to the slippage, and a slippage parameter is introduced. A new analytical solution is presented for the plane strain analysis of displacements around circular openings. The displacements obtained by using the new solution are found to be well coincide with the exact solutions from the published sources.