• Title/Summary/Keyword: Slip-frequency control

Search Result 119, Processing Time 0.031 seconds

Microcomputer에 의한 3상유도전동기의 속도제어에 관한 연구

  • 정연택;이사영
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.303-307
    • /
    • 1982
  • This paper describes how to improve a induction moter efficiency by a slip frequency control. Digital filter controlled by microcomputer is introduced in control system of a constant speed-drive and it has prove that the moter can be drived with a high efficiency at a constant slip frequency. The constant slip frequency control method has a merit of simplness.

  • PDF

Variable Slip Frequency Control of LIM for Magnetically Levitated Train (자기부상열차 추진용 LIM의 운전 효율 향상을 위한 가변 슬립주파수 제어)

  • Park, Seung-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.46-51
    • /
    • 2018
  • Constant slip frequency control has been conventionally used in thrust control of the linear induction motor(LIM) for magnetically levitated train. However in this paper variable slip frequency control method is presented to increase LIM efficiency according to change of driving notch. Thrust, attractive force, input power to inverter, regenerative power of the LIM are analyzed by finite element method when the train runs according to the presented control method. As a result it is proved experimentally that the electrical energy to inverter is reduced than the conventional method.

A study on the slip frequency control of linear induction motor for magnetic levitation transit (자기 부상 열차용 리니어모터의 슬립 주파수 제어에 관한 연구)

  • Im, Dal-Ho;Kim, Gyu-Tak;Kim, Young-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.135-138
    • /
    • 1991
  • In this study, a variety of characteristics is considered when LIM for transit is driven with acceleration and deceleration. From the characteristics of constant voltage, with V/f ratio fixed, slip frequency is derived. With slip frequency of 12[Hz] and objective velocity of 40[km/h], the robust control characteristics which are generated constant thrust and normal force, except for open-loop control interval, are obtained.

  • PDF

Design of Indirect Vector Controller of Induction Motor using Fuzzy Algorithm and apply to the Speed Control System of Elevator (퍼지 알고리즘을 이용한 유도전동기 간접벡터제어기의 설계와 엘리베이터 속도제어 시스템의 응용)

  • 경제문;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.110-113
    • /
    • 2000
  • In general, speed control method of the elevator system has used motor pole change type or motor primary voltage control type. But it will change to vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control that primary current of the induction motor be controlled independently with magnetizing current(field current of DC motor) and torque current(armature current of DC motor). In this paper, by analyzing the effect of the time constant variation of rotor of the induction motor on the slip frequency type indirect vector control, a drive system for the motor will be constructed using a fuzzy slip frequency type indirect vector controller with fuzzy control method for estimating the vector time constant in the slip frequency type indirect vector control. The goal of this study is to enabling even more efficient speed control by constructing on elevator driver based on the newly developed drive system.

  • PDF

A Study on Closed Loop Control of a Linear Induction Motor Using General Purpose Frequency Inverter (범용 인버터에 의한 선형유도 전동기의 폐루프 제어 방식에 관한 연구)

  • Oh, Sung-Chul;Kim, Eun-Soo;Kim, Yong-Joo;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.641-644
    • /
    • 1991
  • Constant slip frequency operation of linear infliction motor is essential for the stable levitation. Control scheme for the constant slip frequency with general purpose frequency inverter is proposed, Speed sensing scheme with proximitity switch for the speed feedback is also proposed. Optimal slip frequency, at which normal force is equal to 0, is selected by the experiment. This slip frequency is a comand to the controller. It shows good characteristic during acceleration and deceleration.

  • PDF

A Study on Improvement of Operation Efficiency of Magnetic Levitation Train Using Linear Induction Motor

  • Park, Sang Uk;Zun, Chan Yong;Park, Doh-Young;Lim, Jaewon;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • In this paper, a study on the efficiency improvement of the magnetic levitation train using the LIM (Linear Induction Motor) was presented. The maglev train has the advantage of being environmentally friendly since much less noise and dust is produced. However, due to structural limitation, compared to a rotating induction motor, linear induction motor, the main propulsion engine of the maglev train has a relatively greater air gap and hence has the lower operation efficiency. In this paper, the relationship between the operating condition of the train and the slip frequency has been investigated to find out the optimum slip frequency that might improve the efficiency of the magnetic levitation train with linear induction motor. The slip frequency is variable during the operation by this relationship only within a range that does not affect the levitation system of the train. After that, the comparison of the efficiency between the conventional control method with the slip frequency fixed at 13.5[Hz] and the proposed method with the slip frequency variable from 9.5[Hz] to 6.5[Hz] has been conducted by simulation using Simplorer. Experiments of 19.5[ton] magnetic levitation trains owned by Korea Institute of Machinery and Materials were carried out to verify the simulation results.

Position Control for Induction Servo Motors Using a Theory of Variable Structure Control (가변구조제어 이론을 이용한 유도 서보 전동기의 위치제어)

  • Hong Soon-Ill;Hong Jeng-Pyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.132-139
    • /
    • 2005
  • This paper describes the application of sliding mode control based on the variable structure control(VSC) concept for high-performance position control of an induction servo motor A design method based on external load parameters has been developed for the robust control of AC induction servo drive. Also, a slip frequency vector control with software current control technique has been adopted to achieve fast response of an induction motor drive The position control scheme is comprised of a variable structure controller and slip frequency vector control for inverter fed induction servo motor. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft inertia, viscous friction and torque disturbance.

A Study on vector control of induction motor drive using a speed sensorless (속도센서리스 벡터제어에 의한 유도전동기 운전)

  • 이춘상
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.417-420
    • /
    • 2000
  • In order to the torque control the indirect flux control was performed by controlling the ratio of e/f and the q-axis flux was estimated by the slip command and q-axis flux was estimated by the slip command and q-axis current in the rotor circuits. Also the frequency was controlled to keep on the q-axis flux to be zero and the constant torque characteristics could be obtained by generation the preset torque. In the induction motor driven by the boltage source inverter with the constant voltage and frequency the speed variation is expressed as a slip So the speed control can be achieved by slip compensation The slip was calculated with a q-flux current filtered by first-order filter and as the result the error problem which may occur in current detection was eliminated

  • PDF

Efficiency Improvement of Inverter Fed Induction Machine System Using Neural Network (신경망을 이용한 유도전동기-인버터 시스템의 효율향상)

  • Ryu, Joon-Hyoung;Lee, Seung-Chul;Choy, Ick;Kim, K.B.;Lee, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1984-1986
    • /
    • 1998
  • This paper presents an optimal efficiency control for the inverter fed induction machine system using neural network. The motor speed and the load torque vary the efficiency characteristics of an induction motor. The optimal slip frequency has nonlinearity varied by the load torque as well as the motor speed. The induction motor is driven using the inverter system and the indirect vector control method which input is slip frequency. The neural network for estimating the optimal slip frequency has two input layer(the motor speed and the load torque) and one output layer(the optimal slip frequency that minimize the input power). Learning algorithm of the neural network is the back-propagation. Using the equivalent circuit including the nonlinearity of the induction motor, the loss reduction is analyzed quantitatively. Experimental results are shown noticeable power savings by proposed scheme in high speed and light load conditions.

  • PDF

SLIP FREQUENCY CONTROL FOR HIGH EFFICIENCY DRIVE OF SINGLE-SIDED LINEAR INDUCTION MOTOR (선형유도전동기의 고효율 운전을 위한 슬립주파수 제어)

  • Im, Dal-Ho;Kim, Gyu-Tak;Park, Seung-Chan;Kwon, O-Mun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.689-691
    • /
    • 1992
  • In this study, slip frequency control for a single-sided linear induction motor(SLIM) is discussed. We adopted variable slip frequency pattern in stead of constant slip frequency pattern under V/f constant mode, which is effective in improving driving efficiency of SLIM. And the dynamic characteristics are analyzed by using equivalent circuit during the accelerating time.

  • PDF