• Title/Summary/Keyword: Slip system

Search Result 920, Processing Time 0.029 seconds

Investigation of the effect of damper location and slip load calculation on the behavior of a RC structure

  • Mehmet Sevik;Taha Yasin Altiok;Ali Demir
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.365-375
    • /
    • 2023
  • Energy dissipation systems increase the energy dissipation capacity of buildings considerably. In this study, the effect of dampers on a typical 10-storey reinforced concrete structure with a ductile moment-resisting frame was investigated. In this context, 5 different models were created according to the calculation of the slip load and the positions of the dampers in the structure. Nonlinear time-history analyzes using 11 different earthquake acceleration records were performed on the models using the ETABS program. As a result of the analyses, storey displacements, energy dissipation ratios, drift ratios, storey accelerations, storey shears, and hysteretic curves of the dampers on the first and last storey and overturning moments are presented. In the study, it was determined that friction dampers increased the energy dissipation capacities of all models. In addition, it has been determined that positioning the dampers in the outer region of the structures and taking the base shear as a basis in the slip load calculation will be more effective.

Using SDU Slip/Slide Control (SDU 장치를 이용한 Slip/Slide 제어방안)

  • Park, Ju-Yeon;Kang, Deok-Won;Lee, Jong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.377-383
    • /
    • 2011
  • The paper is to perceive accurately speed of the train through redundant processor operation. When Slip/slide is occurred at the axle, the train is applied brake force using the Tachometer and the Doppler sensor which assistance equipment. One of the main features of railway signaling system is that rolling stock is made stop to avoid collision with the rolling stock ahead when the rolling stock exceeds its maximum operating speed in line. In addition, in the case of the rolling stock with automatic train operation, it carries out activities such as braking and propulsion using the difference between its actual speed and target speed at the point. To perform these functions, it is essential to calculate the exact speed of the rolling stock in signaling equipment on vehicles. Train speed detection unit are composed of the Tachometer and the Doppler sensor, and speed information is sent to the SDU unit. The processor of SDU unit calculates the speed of the train using compare logic the received speed information. Even if there are Slip/Slide, signaling system is available to apply exact braking, to improve stop on position and to guarantee the safety of trains.

  • PDF

Slip Detection and Control Algorithm to Improve Path Tracking Performance of Four-Wheel Independently Actuated Farming Platform (4륜 독립구동형 농업용 플랫폼의 주행 궤적 추종 성능 향상을 위한 휠 슬립 검출 및 보상제어 알고리즘 연구)

  • Kim, Bongsang;Cho, Sungwoo;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In a four-wheel independent drive platform, four wheels and motors are connected directly, and the rotation of the motors generates the power of the platform. It uses a skid steering system that steers based on the difference in rotational power between wheel motors. The platform can control the speed of each wheel individually and has excellent mobility on dirt roads. However, the difficulty of the straight-running is caused due to torque distribution variation in each wheel's motor, and the direction of rotation of the wheel, and moving direction of the platform, and the difference of the platform's target direction. This paper describes an algorithm to detect the slip generated on each wheel when a four-wheel independent drive platform is traveling in a harsh environment. When the slip is detected, a compensation control algorithm is activated to compensate the torque of the motor mounted on the platform to improve the trajectory tracking performance of the platform. The four-wheel independent drive platform developed for this study verified the algorithm. The wheel slip detection and the compensation control algorithm of the platform are expected to improve the stability of trajectory tracking.

An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft (회전익 항공기 전륜착륙장치 단속거동 현상 개선연구)

  • Choi, Jae Hyung;Chang, Min Wook;Lee, Yoon-Woo;Yoon, Jong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

풍력발전을 위한 이중여자 유도기의 센서리스 제어

  • 김용현;김일환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.451-458
    • /
    • 2000
  • In wind power generating system connected in power grid, the value of stator flux has almost constant because the stator side of doubly fed induction machine(DFIM) is connected to power grid. Using the stator and rotor current, it is possible to estimate the slip angle and rotor speed. A stator flux orientation scheme and rotor slip estimator are employed to achieve control of generating power in stator side. To verify the theoretical analysis, a 5-hp DFIM prototype system and PWM power converter are built. Results of computer simulation and experiment are presented to support the discussion.

  • PDF

Fall arresting system

  • Leamon, T.S.;Malone, C.;Son, D.H.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 1991
  • A major inhibition of past work in a slip/fall accident study has been due to the lack of a facility and a methodology to experimentally investigate such behavior without expowting human subjects to the natural danger of injury resulting from a fall. In order to carry out a slip/fall research, a unique facility must be created specially to investigate falling and slipping behavior. One component of this facility will be used to focus a research towards experimental investigations of the basic mechanisms involved in falls. Especially, this compo- nent must be designed, developed, and fabricated to provide passive, reactive support at the point of loss of ba- lance. This component must allow both normal and reduced friction surfaces to be designated to investigate human falling in the experimental conditions. This study will address how a fall arresting system was designed and it would be implemented in actual case of a slip/fall study.

  • PDF

Anti-Slip Control and Speed Sensor-less Vector Control of the Railway Vehicle (철도차량의 Anti-Slip 제어 및 속도센서리스 벡터제어)

  • Jho Jeong-Min;Kim Gil-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.216-221
    • /
    • 2005
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the wright of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed re-adhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Development and Evaluation of ESP Systems for Enhancement of Vehicle Stability during Cornering (II) (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (II))

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1551-1556
    • /
    • 2006
  • Two yaw motion control systems that improve a vehicle lateral stability are proposed in this study: a rear wheel steering yaw motion controller (SESP) and an enhanced rear wheel steering yaw motion controller (ESESP). A SESP controls the rear wheels, while an ESESP steers the rear wheels and front outer wheel to allow the yaw rate to track the reference yaw rate. A 15 degree-of-freedom vehicle model, simplified steering system model, and driver model are used to evaluate the proposed SESP and ESESP. A robust anti-lock braking system (ABS) controller is also designed and developed. The performance of the SESP and ESESP are evaluated under various road conditions and driving inputs. They reduce the slip angle when braking and steering inputs are applied simultaneously, thereby increasing the controllability and stability of the vehicle on slippery roads.

Analysis of Steady State Characteristics of Doubly-Fed Induction Generator in Wind Turbine system (이중여자 유도발전 풍력시스템의 정상상태 특성 해석)

  • Jang, Bo-Kyoung;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.460_461
    • /
    • 2009
  • This paper analyzes the steady state characteristics for variable speed wind power system with doubly-fed induction generator(DFIG). This paper explains the equivalent circuit and phasor diagram of DFIG for different operating conditions. It also simulates the torque-slip characteristics with respect to changes of different parameters. Simulation results show the torque-slip characteristics, stator power factor-rotor voltage and stator current-rotor voltage.

  • PDF

Grip Force Control of Myoelectric Signal Driving Type Myoelectric Hand Prosthesis (근전위 신호구동형 전동의수의 파지력 제어)

  • Choi, Gi-Won;Choe, Gyu-Ha;Shin, Woo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.340-342
    • /
    • 2007
  • This paper presents the grip force control of myoelectric hand prosthesis according to myoelectric signal generated in the human muscle. The control system consist of a controller for driving DC motor, torque sensor for measuring out torque of motor, slip sensor for detecting slip of torque. The experimental results proved the reliability of proposed control system.

  • PDF