• Title/Summary/Keyword: Slip amplitude

Search Result 93, Processing Time 0.026 seconds

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.

A Study on Stratification Phenomena of Still Hydrogen-Methane Gas Mixture in a Vertical Urban Gas Pipe (도시가스 수직 배관 내 정지된 수소-메탄 혼합가스의 성층화 현상 연구)

  • Tae Kyun Kim;Jung Min Cho;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.68-78
    • /
    • 2024
  • The stratification phenomena of still hydrogen (20%) and methane (80%) gas mixture in a vertical urban gas pipe have been investigated by simulating the flows based on a mixture model. The stratification is accompanied with the natural convection by the buoyancy force. The hydrogen volume fraction in the upper sections of the pipe increases with time but the increasing rate gets smaller due to the weaker buoyancy force. The pipe with a smaller diameter exhibits a higher peak of hydrogen concentration. The size of vortices is proportional to the pipe diameter. The slip velocity between hydrogen and methane oscillates with a large amplitude at the earlier stage of stratification and then the amplitude decreases sharply. The slip velocity decreases with the diameter, making the stratification become slower. The length of pipe does not affect the stratification since the pipe is sufficiently long relative to the size of vortices.

Impulse Response Analysis of an Amplitude Proportional Friction Damper System (변위비례식 마찰댐퍼 시스템의 임펄스 가진 응답해석)

  • 최명진;박동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.377-384
    • /
    • 2004
  • An Amplitude Proportional Friction Damper (APFD), in which the friction force is proportional to the system displacement, has been introduced and mathematically modeled. To understand the damping characteristics of APFD, analytical solutions for the impulse response has been derivedand compared to the viscous damper. It is found that APFD system has very similar damping characteristics to viscous damper even though it is a friction damper. APFD may be used as a cost-effective substitution for the viscous damper and could also be used to improve the simple friction or Coulomb dampersince APFD works with no stick-slip and always returns to original position when external disturbance is disappeared.

The Estimation of Mechanical Properties of the High Frequency Induction Hardening SM45C Steel by Acoustic Emission (음향방출법에 의한 SM45C 고주파 열처리 강의 기계적 특성 평가)

  • Rhee, Zhang-Kyu;Kim, Bong-Gag
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.471-481
    • /
    • 2009
  • This study is deal with the high frequency induction hardening (HF at $850^{\circ}C$, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen which was tempered at $150^{\circ}C$, did not appear any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE amplitude distribution showed between 45~60dB. (2) The HF specimen which was tempered at $300^{\circ}C$, slip and fracture occurred at the hole area of the tensile specimen. As it passes the yield point, the AE energy increased intermittently and AE amplitude distribution showed between 70~85dB. In addition, after the maximum tensile load, it showed high amplitude and energy distribution. The AE amplitude showed between 45~70dB. (3) The HF specimen which was tempered at $450^{\circ}C$, a brittle fracture occurred as if it is torn in the direction of $45^{\circ}$ on parallel area over the both sides of the tensile specimen, which led to several peak to be appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.

  • PDF

The Analysis of Mechanical Properties of the High Frequency Induction Hardening SM45C Steel by Acoustic Emission (음향방출법에 의한 SM45C 고주파 열처리 강의 기계적 특성 평가)

  • Rhee, Zhang-Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • This study deals with the high frequency induction hardening (HF at $850^{\circ}C$, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen, which was tempered at $150^{\circ}C$, did not show any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE (acoustic emission) amplitude distribution showed between 45dB and 60dB. (2) A slip and fracture occurred at the hole area of the HF specimen which was tempered at $300^{\circ}C$. As they pass the yield point, the AE energy is increased intermittently and AE amplitude distribution exists between 70dB and 85dB. In addition, after imposing the maximum tensile load, AE signals showed high amplitude and energy distribution. The AE amplitude showed between 45dB and 70dB. (3) A brittle fracture occurred at HF specimen which was tempered at $450^{\circ}C$ as if it is torn in the direction of $45^{\circ}$ on parallel area over the both sides of the tensile specimen, which lead to several peak appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.

Fabrication of 3Y-TZP/SUS316 Functionally Graded Material by Slip Casting Method Using Alumina Mold (알루미나몰드를 사용한 슬립캐스팅법에 의한 3Y-TZP/SUS316계 경사기능재료의 제조)

  • 여정구;정연길;이세훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 1997
  • 3Y-TZP/SUS316 Functionally Graded Material (FGM) was fabricated by slip casting method. Alumina mold was used to overcome problems of gypsum mold in slip casting process, and the optimal dispersion con-ditions of 3Y-TZP/SUS316 binary slurries was determined using electrokinetic sonic amplitude and a viscometer, and observing sedimentation behavior. The properties of the specimens casted by gypsum mold and alumina mold were compared in terms of changes in shrinkage rate, drying and sintering conditions, and microstructure. It was found that the specimens obtaine from the alumina mold showed a clean surface, easier thickness control of each layer, and higher productivity. Especially, no degradation was observed in the SUS316 prepared using alumina mold. Thus it is desirable to use porous alumina mold rather than gyp-sum mold for the slip casting of 3Y-TZP/SUS316-FGM.

  • PDF

Seismic response analysis of an unanchored vertical vaulted-type tank

  • Zhang, Rulin;Cheng, Xudong;Guan, Youhai;Tarasenko, Alexander A.
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • Oil storage tanks are vital life-line structures, suffered significant damages during past earthquakes. In this study, a numerical model for an unanchored vertical vaulted-type tank was established by ANSYS software, including the tank-liquid coupling, nonlinear uplift and slip effect between the tank bottom and foundation. Four actual earthquakes recorded at different soil sites were selected as input to study the dynamic characteristics of the tank by nonlinear time-history dynamic analysis, including the elephant-foot buckling, the liquid sloshing, the uplift and slip at the bottom. The results demonstrate that, obvious elephant-foot deformation and buckling failure occurred near the bottom of the tank wall under the seismic input of Class-I and Class-IV sites. The local buckling failure appeared at the location close to the elephant-foot because the axial compressive stress exceeded the allowable critical stress. Under the seismic input of Class-IV site, significant nonlinear uplift and slip occurred at the tank bottom. Large amplitude vertical sloshing with a long period occurred on the free surface of the liquid under the seismic wave record at Class-III site. The seismic properties of the storage tank were affected by site class and should be considered in the seismic design of large tanks. Effective measures should be taken to reduce the seismic response of storage tanks, and ensure the safety of tanks.

A Study on the Load Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing (공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구)

  • 조성욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.156-161
    • /
    • 1999
  • new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under a13 bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number)0.01, we can not ignore the effect of slip for journal bearing.

  • PDF

Study on structural damping of aluminium using multi-layered and jointed construction

  • Nanda, B.K.;Behera, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.631-653
    • /
    • 2005
  • In this work, the mechanism of damping and its theoretical evaluation for layered aluminium cantilever structures jointed with a number of equispaced connecting bolts under an equal tightening torque have been considered. Extensive experiments have been conducted on a number of specimens for comparison with numerical results. Intensity of interface pressure, its distribution pattern, dynamic slip ratio and kinematic coefficient of friction at the interfaces, relative spacing of the connecting bolts, frequency and amplitude of excitation are found to play a major role on the damping capacity of such structures. It is established that the damping capacity of structures jointed with connecting bolts can be improved largely with an increase in number of layers maintaining uniform intensity of pressure distribution at the interfaces. Thus the above principle can be utilized in practice for construction of aircraft and aerospace structures effectively in order to improve their damping capacity which is one of the prime considerations for their design.

A Study on the Lond Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing (공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구)

  • 조성욱;임윤철
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.28-32
    • /
    • 2001
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under all bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number>0.01, we can not ignore the effect of slip for Journal bearing.