• Title/Summary/Keyword: Sliding plane

Search Result 144, Processing Time 0.026 seconds

Numerical simulation and countermeasure on upheaval generation in the road caused by sliding of a slope (사면활동으로 야기된 도로부 융기발생에 대한 수치해석 및 고찰)

  • Kim, Seung-Hee;Rhee, Jong-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.833-841
    • /
    • 2008
  • Recently, the upheaval generation in the road which is under service had been reported. Due to the upheaval generation, total 4 lanes were forced to curtail to 3 lanes, and traffic was delayed. In normal situation of cut-slopes in korea, that condition is hard to detect since most cut-slopes contain discontinuous material, that is rock. Common collapses in rock-slopes is wedge failure, plane failure and toppling failure which is all individual mechanism of discontinuous rock mass. In contrast, such upheaval in the road in front of cut-slope can be generated only when circular movement is triggered within the cut-slope. In this sense, rock-slopes barely show any kind of movement in the road locates at the front of them. Numerical analysis is general method in simulation of slope displacement and evaluation of safety. However, numerical analysis programs which are related with rock-slopes are not able to simulate such upheaval movement because that programs are based on discontinuous modeling mechanism. In addition, although numerical analysis programs which are based on FEM/FDM and thus utilize continuous modeling mechanism are able to simulate circular movement and upheaval situation, they have weakness in reflecting discontinuities of rock-slope itself. In this study, detailed in-site investigation and numerical analysis based on in-site condition were performed in order to expect upheaval movement in the road. In this procedure, the FLAC program which uses continuous modeling method was utilized, and new approach reflecting discontinuity developed toward the road with a ubiquitous joint model was tried to derive reliable analysis result.

  • PDF

Earth Pressure on the Cylindrical Wall in Cohesionless Soils (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압)

  • 천병식;신영완
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.175-187
    • /
    • 2003
  • The earth pressure acting on the cylindrical retaining wall in cohesionless soils is different from that on the retaining wall in plane strain condition due to three dimensional arching effect. Accurate estimation of earth pressure is required for the design of vertical cylindrical retaining wall. Failure modes of the ground behind vertical shaft are dependent on ground in-situ stress conditions. Failure modes are actually divided into two modes of cylindrical failure mode and funnel-shaped mode with truncated cone surface. Several researchers have attempted to estimate the earth pressure on cylindrical wall for each failure mode, but they have some limitations. In this paper, several equations for estimating the earth pressure on cylindrical wall in cohesionless soils are investigated and new formulations for two failure modes are suggested. It rationally takes into account the overburden pressure, wall friction, and force equilibriums on sliding surface.

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

ORTHODONTIC MANAGEMENT OF CLASS III MALOCCLUSION WITH HORSESHOE APPLIANCE (Horseshoe Appliance를 이용한 III급 부정교합의 교정적 접근)

  • Han, Ji-Hye;Baik, Byeong-Ju;Yang, Yeon-Mi;Seo, Jeong-Ah;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.4
    • /
    • pp.675-681
    • /
    • 2005
  • The Horseshoe appliance was introduced by Dr. Schwarz, and it is used to correct sagittal relationships by elastic force in class III malocclusion. It minimizes the increment of lower anterior facial height and allows the mandible to be repositioned harmoniously with the soft tissue and muscle matrix of the jaw It has the advantages of better patient cooperation, easier construction, and more effective modification. In the patients who were treated with Horseshoe appliance, forward growth of maxilla and counterclockwise rotation of occlusal plane with labioversion of maxillary incisors and linguoversion of mandibular incisors were obtained. Minimum downward and backward rotation of mandible was accepted, so increasing of lower anterior facial height was minimized.

  • PDF

Evaluation of Tooth Movement and Arch Dimension Change in the Mandible Using a New Three-dimensional Indirect Superimposition Method

  • Oh, Hyun-Jun;Baek, Seung-Hak;Yang, Il-Hyung
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.66-79
    • /
    • 2014
  • Purpose: To analyze the amount and pattern of tooth movement and the changes in arch dimension of mandibular dentition after orthodontic treatment using a new three-dimensional (3D)-indirect superimposition method. Materials and Methods: The samples consisted of fifteen adult patients with class I bialveolar protrusion and minimal anterior crowding, treated by extraction of four first premolars with conventional sliding mechanics. After superimposition of 3D-virtual maxillary models before and after treatment using best-fit method, 3D-virtual mandibular model at each stage was placed into a common coordinate of superimposition using 3D-bite information, which resulted in 3D-indirect superimposition for mandibular dentition. The changes in mandibular dental and arch dimensional variables were measured with Rapidform 2006 (INUS Technology). Paired t-test was used for statistical analysis. Result: The anterior teeth moved backward, displaced laterally, and inclined lingually. The posterior teeth showed statistically significant contraction toward midsagittal plane. The amounts of backward movement of anterior teeth and forward movement of posterior teeth showed a ratio of 6 : 1. Although the inter-canine width increased slightly (0.8 mm, P<0.05), the inter-second premolar, inter-first molar, and inter-second molar widths decreased significantly with similar amounts (2.2 mm, P<0.05; 2.3 mm, P<0.01; 2.3 mm, P<0.001). The molar depth decreased (6.7 mm, P<0.001) but canine depth did not change. Conclusion: A new 3D-indirect superimposition of the mandibular dentitions using best-fit method and 3D-bite information can present a guideline for virtual treatment planning in terms of tooth position and arch dimension.

The structural performance of arches made of few vossoirs with dry-joints

  • Bernat-Maso, Ernest;Gil, Lluis;Marce-Nogue, Jordi
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.775-799
    • /
    • 2012
  • This work approaches the structural performance of masonry arches that have a small ratio between number of vossoirs and span length. The aim of this research is to compare and validate three different methods of analysis (funicular limit analysis F.L.A., kinematic limit analysis K.L.A. and plane stress Finite Element Analysis F.E.A.) with an experimental campaign. 18 failure tests with arches of different shapes and boundary conditions have been performed. The basic failure mechanism was the formation of enough hinges in the geometry. Nevertheless, in few cases, sliding between vossoirs also played a relevant influence. Moreover, few arches didn't reach the collapse. The FLA and KLA didn't find a solution close to the experimental values for some of the tests. The low number of vossoirs and joints become a drawback for an agreement between kinematic mechanism, equilibrium of forces and geometry constraints. FLA finds a lower bound whereas KLA finds an upper bound of the ultimate load of the arch. FEA is the most reliable and robust method and it can reproduce most of the mechanism and ultimate loads. However, special care is required in the definition of boundary conditions for FEA analysis. Scientific justification of the more suitability of numerical methods in front of classic methods at calculating arches with a few vossoirs is the main original contribution of the paper.

Surface Geophysical Investigations of a Slope-failure Terrane at Wiri, Andong, Korea (안동시 위리의 사면파괴 지역에 대한 지표 물리탐사)

  • 김지수;한수형;정교철
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.193-204
    • /
    • 2001
  • A geophysical survey was undertaken at Wiri area, Andong, to delineate subsurface structure and reveal the fault zone nearby which heaving of road and subsidence of slope occurred in 1997, especially in the heavy rainy season. Electrical resistivity methods of dipole-dipole array profiling and Schlumberger array sounding and seismic methods of refraction and reflection were performed for the mapping of clay layer, which was interpreted to be the major factor among the reasons of slope deformation. The clay layer was characterized by lower electrical resistivities (< $100{\Omega}{\cdot}m$) and lower seismic velocities (<400 m/s), respectively. The results of electrical and seismic surveys showed that subsidence of slope was probably associated with sliding of wet clay on 18SW/NNW trending fault plane, while heaving of road was probably caused by upward movement of the wet clay through subvertical NNE trending fault.

  • PDF

Rock Slope Stability Investigations Conducted on the Road Cut in Samrangjin-Miryang Area (삼량진-밀양 지역에 위치한 도로 절취사면에 대한 사면안정 연구)

  • Um Jeong-Gi;Kang Taeseung;Hwang Jin Yeon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.305-317
    • /
    • 2005
  • This study addresses the preliminary results of rock slope stability analyses including hazard assessments for slope failure conducted on the selected sections of rural road cut slope which are about 4 km long. The study area is located in the Mt. Chuntae northeast of Busan and mainly composed of Cretaceous rhyolitic ash-flow tuff', fallout tuff, rhyolitc and andesite. The volcanic rock mass in the area has a number of discontinuities that produce a potentially unstable slope, as the present cut slope is more than 70 degrees in most of the slope sections. Discontinuity geometry data were collected at selected 8 scanline sections and analyzed to estimate important discontinuity geometry parameters to perform rock slope kinematic and block theory analyses. Kinematic analysis for plane sliding has resulted in maximum safe slope angles greater than $65^{\circ}$ for most of the discontinuities. For most of the wedges, maximum safe cut slope angles greater than $45^{\circ}$ were obtained. Maximum safe slope angles greater than 80" were obtained fur most of the discontinuities in the toppling case. The block theory analysis resulted in the identification of potential key blocks (type II) in the SL4, SL5, SL6 and SL8 sections. The chance of sliding taking place through a type ll block under a combined gravitational and external loading is quite high in the investigated area. The results support in-field observations of a potentially unstable slope that could become hazardous under external forces. The results obtained through limit equilibrium slope stability analyses show how a stable slope can become an unstable slope as the water pressure acting on joints increases and how a stable slope under Barton's shear strength criterion can fail as the worst case scenario of using Mohr-Coulomb criterion.

The Effects of Different Backrest Pivot Positions on the Human Body During Reclining of the Office Chair (사무용 의자에서 등판의 회전축 위치가 틸트시 인체에 미치는 영향)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Choi, Chun-Ho;Kim, Sa-Yup;Hong, Gyu-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.167-174
    • /
    • 2010
  • In this study, the optimal position for the backrest pivot of an office chair was investigated by evaluating its performance in terms of the lumbar support and sliding distance of the back from the backrest during tilting motions. The simulation was performed using a mathematical model, which included a human body and a chair. Forty-two backrest pivot points were selected on the sagittal plane around the hip joint of a sitting model. A motion analysis study was also performed using a prototype of an office chair (A-type) with a backrest pivot located on the hip joint of a normal Korean model and a typical office chair (B-type) with its pivot located under the seat. The simulation results showed that both the lordosis angle and the slide distance of the back were minimized when the backrest pivot was positioned close to the hip joint. The experimental results showed that the slide distance and gap between the sitter's lumbar and the backrest was smaller with the A-type than the B-type. Based on the simulation and experimental results, it can be concluded that the backrest can support the sitter's lumbar area more effectively as the pivot position for reclining approaches closer to the hip joint. In this position, the sitter can maintain a comfortable and healthy sitting posture. This paper presents the methods and guidelines for designing an office chair with ergonomic considerations.

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test (원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증)

  • Lee, Jin-Sun;Park, Tae-Jung;Lee, Moon-Gyo;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.57-70
    • /
    • 2018
  • In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.