• 제목/요약/키워드: Sliding observer

검색결과 351건 처리시간 0.049초

적응 슬라이딩 모드 관측기를 이용한 Switched Reluctance Generator의 위치 센서 없는 구동에 관한 연구 (Adaptive Sliding Mode Observer for DC-Link Voltage Control of Switched Reluctance Generator without Position Sensor)

  • 최양광;김영석;김영조;최정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.179-182
    • /
    • 2002
  • The position information of the rotor are required while the SRG(Switched Reluctance Generator) is drived. The position information is generally provided by shaft encoder or resolver. But it is weak in the dusty, high temperator and EMI environment. Therefore, the sensor is able to required to eliminated from the SRG. In this paper, a estimation algorithm for the rotor position of the SRG is introducted and a constant DC-link voltage is controled by PID controller. The estimation algorithm is implemened by the adaptive sliding observer and that it is able to estimate the rotor position well is proved by the simulation.

  • PDF

퍼지 제어기를 이용한 상용차 ABS 제어에 대한 연구 (The study of ABS control system using fuzzy controller for commercial vehicles)

  • 김동희;박종현;김용주;황돈하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.110-110
    • /
    • 2000
  • In this paper, an antilock brake system (ABS) for commercial vehicles is studied by considering the design of a fuzzy Logic controller with pulse width modulation (PWM). PWM method is used for generating solenoid valve inputs in order to cope with the chattering problem caused by the conventional on/off control The sliding mode observer is designed to estimate the vehicle longitudinal velocity and it is used to calculate the wheel slip ratio. The effectiveness of the proposed control algorithm was validated by simulations performed with a nonlinear 14-DOF vehicle model including the dynamics of the brakes.

  • PDF

로봇모터 제어를 위한 슬라이딩형 퍼지관측기 설계 (Design of a Sliding Type Fuzzy Observer for Robot Motor Control)

  • 김상훈;김정현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2010년도 제42차 하계학술발표논문집 18권2호
    • /
    • pp.59-62
    • /
    • 2010
  • 로봇모터제어에 사용되는 서보전동기의 센서리스 운전에 대한 초기의 연구에서는 전동기의 전압과 전류를 측정하여 전동기 모델로부터 속도를 연산하는 방식을 취해왔으나, 근래에는 현대제어 이론 중 관측기 이론을 적용하여 속도 추정 및 센서리스 운전을 위한 다양한 연구가 시도되고 있다. 본 논문에서 설계한 슬라이딩형 퍼지 관측기의 속도추정 성능을 검증하기 위해 먼저 슬라이딩 관측기를 이용하여 전기자 전류의 도함수를 추정하고 속도관측기인 Luenberger 관측기의 이득을 퍼지 제어 기법을 이용하여 관측기 이득을 최적 값으로 선정하고 이것을 이용하여 직류 서보 전동기의 속도제어에 적용하였다.

  • PDF

센서리스 유도전동기를 위한 개선된 적응 슬라이딩 모드 관측기의 설계 (Design of Adaptive Sliding Observer for Sensorless Induction Motor Drive)

  • 김상민;한우용;김성중;이창구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1138-1141
    • /
    • 2003
  • This paper proposes a new speed and flux estimation method which has the robustness against the variation of the electrical parameters of the motor and the superiority in the dynamic characteristics compared with the conventional sensorless schemes. In the proposed method, the stator currents and the rotor fluxes are observed on the stationary reference frame using the sliding mode concept. And the rotor speed is estimated using the current estimation errors and the observed rotor fluxes based on the Lyapunov stability theory. Also a design method of the observer gain is proposed to minimize the effect of the speed estimation error on the rotor flux observation. The experimental results verified that the proposed method shows more robust and improved performances than the previous estimation method under the variations of motor resistance and inductance.

  • PDF

슬라이딩 모드 관측기를 가지는 가변구조제어를 사용한 직접구동용 브러쉬없는 직류전동기의 강인한 위치제어 (A Robust Position Control of a Brushless Direct Drive Motor Using a Variable Structure Control with Sliding Mode Observer)

  • 정세교;홍찬호;이대식;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1041-1043
    • /
    • 1993
  • A robust position control scheme for a Brushless Direct Drive Motor(BLDDM) is presented. To obtain the robustness under the load variation, a Variable Structure Controller(VSC) is used. However, the VSC has a chattering problem and require the full state informations. To overcome this problem, in this paper, the sliding mode observer is used for compensating the load disturbance and estimating the motor velocity. As a result, the VSC for a BLDDM posision control is designed by using only position measurment and the chattering problem is greatly reduced. To show the validaty of the proposed scheme, the simulation study is carried out.

  • PDF

유도기 파라미터 제어에 관한 연구 (A study on parameter control of induction motor)

  • 채영무;윤병도;김윤호;김찬기;정헌주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.219-223
    • /
    • 1995
  • This paper deals with the robust control system for parameter variations, fast responses and load torque variations. Frist, fuzzy-sliding adaptive control be used to. Fuzzy-sliding adaptive control is good at fast response. Second, there are many requests for selecting freely the moment of inertia, even though moment of inertia is determined with the materials, structure, shape, and size of the motors. Therefore we developed an inertia-lowering control system that uses torque observer to reduce the moment of inertia. Finally, using torque observer, torque control is done so as to compensate load torque. Consequently, the proposed system verified the superiority through the simulations using MATLAB.

  • PDF

적응 슬라이딩모드 관측기를 이용한 조류발전 시스템의 속도 센서리스 제어 (Speed Sensorless Control of Tidal Energy System using an Adaptive Sliding mode Observer)

  • 정해선;나재두;김영석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.259-260
    • /
    • 2010
  • This paper presents the sensorless and MPPT control algorithm for a 100kW tidal energy system. The proposed algoritm is estimated the rotor position and generator speed using adaptive sliding mode observer. The vector control of generator at the machine side converter and the converter at the grid side are controlled to obtain maximum torque and to regulate unity power factor respectively. Psim simulation is used for validity of proposed control algorism.

  • PDF

4륜 조향을 이용한 Steer-by-Wire 시스템의 고장 허용 제어 전략 (Fault Tolerant Control Strategy for Four Wheel Steer-by-Wire Systems)

  • 노성훈;권백순
    • 자동차안전학회지
    • /
    • 제15권2호
    • /
    • pp.13-20
    • /
    • 2023
  • This paper presents a fault tolerant control strategy for Steer-by-Wire (SbW) systems. Among many problems to be solved before commercialization of SbW systems, maintaining reliability and fault tolerance in such systems are the most pressing issues. In most previous studies, dual steering motors are used to achieve actuation redundancy. However, relatively few studies have been conducted to introduce fault tolerant control strategies using rear wheel steering system. In this work, an actuator fault in front wheel steering is compensated by active rear wheel steering. The proposed fault tolerant control algorithm consists of disturbance observer and sliding mode control. The fault tolerant control performance of the proposed approach is validated via computer simulation studies with Carsim vehicle dynamics software and MATLAB/Simulink.

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.