• Title/Summary/Keyword: Sliding mode method

Search Result 590, Processing Time 0.027 seconds

Terminal Sliding Mode Control of Nonlinear Systems Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경망을 이용한 비선형 시스템의 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1033-1039
    • /
    • 2007
  • In this paper, we design a terminal sliding mode controller based on self-recurrent wavelet neural network (SRWNN) for the second-order nonlinear systems with model uncertainties. The terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time in comparison with the classical sliding mode control (CSMC) method. In addition, the TSMC method has advantages such as the improved performance, robustness, reliability and precision. We employ the SRWNN to approximate model uncertainties. The weights of SRWNN are trained by adaptation laws induced from Lyapunov stability theorem. Finally, we carry out simulations for Duffing system and the wing rock phenomena to illustrate the effectiveness of the proposed control scheme.

Adaptive fuzzy sliding mode control of seismically excited structures

  • Ghaffarzadeh, Hosein;Aghabalaei, Keyvan
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.577-585
    • /
    • 2017
  • In this paper, an adaptive fuzzy sliding mode controller (AFSMC) is designed to reduce dynamic responses of seismically excited structures. In the conventional sliding mode control (SMC), direct implementation of switching-type control law leads to chattering phenomenon which may excite unmodeled high frequency dynamics and may cause vibration in control force. Attenuation of chattering and its harmful effects are done by using fuzzy controller to approximate discontinuous part of the sliding mode control law. In order to prevent time-consuming obtaining of membership functions and reduce complexity of the fuzzy rule bases, adaptive law based on Lyapunov function is designed. To demonstrate the performance of AFSMC method and to compare with that of SMC and fuzzy control, a linear three-story scaled building is investigated for numerical simulation based on the proposed method. The results indicate satisfactory performance of the proposed method superior to those of SMC and fuzzy control.

Model Following flight Control System Design (준 슬라이딩 모드 제어 기법을 이용한 모델 추종 비행제어 시스템 설계)

  • Choe, Dong-Gyun;Kim, Shin;Kim, Jong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1133-1145
    • /
    • 2000
  • In this paper a model following flight control system design using the discrete time quasi-sliding mode control method is described. The quasi-sliding mode is represented as the sliding mode band, not as the sliding surface. The quasi-sliding mode control is composed of the equivalent control for the nominal system without uncertainties and disturbances and the additive control compensating the uncertainties and disturbances. The linearized plant on the equilibrium point is used in designing a flight control system and the stability conditions are proposed for the model uncertainties. Pseudo-state feedback control which uses the model variables for the unmeasured states is proposed. The proposed method is applied to the design of the roll attitude and pitch load factor control of a bank-to-turn missile. The performance is verified through the nonlinear six degrees of freedom flight simulation.

  • PDF

Sliding Mode Observer for Uncertain Systems with Mismatched Uncertainties: An LMI Approach (LMI를 이용한 불확실한 시스템의 슬라이딩 모드 관측기 설계)

  • Song, Min-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1757-1758
    • /
    • 2006
  • This paper considers a method to design sliding mode observers for a class of uncertain systems using Linear Matrix Inequalities(LMI). In an LMI-based sliding mode observer design method for a class of uncertain systems the switching surface is set to be the difference between the observer and system output. In terms of LMIs, a necessary and sufficient condition is derived for the existence of a sliding-mode observer guaranteeing a stable sliding motion on the switching surface. The gain matrices of the sliding-mode observer are characterized using the solution of the LMI existence condition. The results are illustrated by an example.

  • PDF

Sliding Mode Control of Three-Phase Four-Leg Inverters via State Feedback

  • Yang, Long-Yue;Liu, Jian-Hua;Wang, Chong-Lin;Du, Gui-Fu
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1028-1037
    • /
    • 2014
  • To optimize controller design and improve static and dynamic performances of three-phase four-leg inverter systems, a compound control method that combines state feedback and quasi-sliding mode variable structure control is proposed. The linear coordinate change matrix and the state variable feedback equations are derived based on the mathematical model of three-phase four-leg inverters. Based on system relative degrees, sliding surfaces and quasi-sliding mode controllers are designed for converted linear systems. This control method exhibits the advantages of both state feedback and sliding mode control. The proposed controllers provide flexible dynamic control response and excellent stable control performance with chattering suppression. The feasibility of the proposed strategy is verified by conducting simulations and experiments.

A Fuzzy Sliding Mode Controller for Nonlinear Robot System

  • Yun, Jeong-Joo;Kim, Jang-Ku;Ahn, Cheol-Ki;Lee, Min-Cheul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.66.5-66
    • /
    • 2001
  • A proposed fuzzy-sliding mode controller in this paper shows that it can reduce amount of chattering inherent to sliding mode control and it is robust against parameter uncertainties. Sliding mode control is one of the control method for nonlinear systems. It can provide good transient performance and system robustness for nonlinear system. But chattering is a serious problem of the sliding mode control. The chattering is caused by steady/state error or uncertainties of the system. There are three kinds of method that can remove chattering. First, steady-state error can be removed by adding PI controller to the system. Second, putting dead-zone in sliding surface can be insensitive uncertainties ...

  • PDF

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

Sliding Mode Control for Time-delay System using Virtual State (가상 상태를 이용한 시간 지연 시스템의 슬라이딩 모드 제어)

  • 송영삼;권성하;박승규;오도창;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.341-341
    • /
    • 2000
  • This paper presents a sliding mode control(SMC) design method for single input linear systems with uncertainties and time delay in the state. We define a sliding surface for the augmented system with a virtual state which is defined from the nominal system. We make a virtual state from optimal control input using LOR(Linear Quadratic Regulator) and the states of the nominal system. We construct a controller that combines SMC with optimal controller. The proposed sliding mode controller stabilizes on the overall closed-loop system.

  • PDF

Robust Sliding Mode Control for Mismatched Uncertainties (비정합 불확실 시스템을 위한 견실한 슬라이딩 모드 제어)

  • 두상호;김가규;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.345-345
    • /
    • 2000
  • This paper introduces a new design approach for robust sliding-mode control of a class of mismatched uncertainties. For this, we propose a design method of sliding-mode surface using eigenstructure assignment to be insensitive to perturbation in sliding-mode systems, and also find a formula which is shown bounds of mismatched uncertainties for stability of the system. Simulation results are given to illustrate the approach proposed in this paper.

  • PDF

Sliding Mode Control Using the Lower Bound of Control Gain (제어이득의 하한을 이용한 새로운 슬라이딩 모드제어)

  • 유병국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.664-668
    • /
    • 2003
  • A new sliding mode control method based on the lower bound of control gain is presented. Although the magnitube of the proposed control input is larger than that of the conventional control input using both lower and upper bounds, the positive-negative exchanging chattering is reduced and reaching mode is shorter. Because the proposed scheme needs only the lower bound of control gain, it is applicable to the system whose upper bound of control gain is doubtful to determine such as the control gain depends on the system states. It is proved that the proposed control method guarantees the sliding condition. The analysis of differences between the conventional method and the proposed method is given. The validity of the proposed control strategy is shown through a 2nd-order nonlinear system example.