• 제목/요약/키워드: Sliding mode control design

검색결과 552건 처리시간 0.034초

A study on sliding surface design

  • Zhang, Yifan.;Lee, Sanghyuk
    • 중소기업융합학회논문지
    • /
    • 제4권2호
    • /
    • pp.25-31
    • /
    • 2014
  • 비선형시스템에 대한 슬라이딩 모드제어 기법에 대한 연구를 수행하였다. 비선형 시스템의 파라미터가 제어성능과 간인성에 대한 관계를 구명하였다. 제어성능을 파악하기 위하여 역진자 시스템에적용하여 보았고, 다른 초기값, 슬라이딩 표면 그리고 입력값의 변화를 통하여 비교결과를 얻었다. 제어값은 제한적이었으며 슬라이딩 표면 역시 예외없이 제한폭을 나타냈다. 채터링 현상은 피할수 없이 존재하였으며, 이를 극복하기 위하여 수정된 불연속 제어기를 사용하여 현상을 감소시켰다.

  • PDF

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

탄성 케이블로 구동되는 조작기 링크의 외란 관측기 기반 슬라이딩모드 제어 (Disturbance Observer Based Sliding Mode Control for Link of Manipulator Driven by Elastic Cable)

  • 강민식
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.949-958
    • /
    • 2012
  • Position tracking control of a link of a slave manipulator which needed to track the corresponding link of a master manipulator was addressed in this paper. Since driving torque from motor is transmitted through a set of flexible cable to link, the motion control system is modeled by a two-mass model connected with elastic coupling which has finite stiffness. Relative vibration of two-mass resonant system is a serious problem to operate manipulator. This paper proposed sliding mode control to reduce resonant vibration and fine position tracking control. Also, a pseudo-sliding mode control which uses a saturation function instead of a signum function was discussed and showed that the pseudo-sliding mode control can improve disturbance regulation performance as well as guarantees fine command tracking without chattering which is an inherent drawback of basic sliding mode control. In addition, a disturbance observer based sliding mode control has been suggested to improve disturbance regulation performance. The feasibility of the proposed control design was verified along with some simulation results.

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

A Design Method of Sliding Model Control System Using Parallel Ladder Network of Dynamic Compensators

  • Ohtsuka, Hirofumi;Iwai, Zenta;Mizumoto, Ikuro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1424-1429
    • /
    • 2003
  • In this paper, the design method of sliding mode control (SMC) system for SISO linear system is discussed. First, we consider the similarity between the design method of sliding mode hyper plane using the strict positive realness and the characteristics of zeros of feedback system and the design method of simple adaptive control. Based on such a consideration, we propose the new design method of SMC system using parallel dynamic compensator. As a result, SMC system can be constructed only with the derivative of output signal for controlled plant. The performance of SMC system designed by proposed method is confirmed through the numerical example.

  • PDF

로봇 메니플레이터의 레귤레이션 제어를 위한 개선된 적분 슬라이딩 모드 제어기 (An Improved Integral Sliding Mode Controller for Regulation Control of Robot Manipulators)

  • 이정훈
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.103-113
    • /
    • 2018
  • In this paper, an improved integral variable structure regulation controller is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear rigid robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to the desired reference without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in order to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems, together with the closed loop stability. The design of the proposed regulation controller is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two-link robot under parameter uncertainties and payload variations.

다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계 (Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots)

  • 박동주;문정환;한성익
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

분리된 비선형 시스템의 적응 퍼지 슬라이딩모드 제어 (An Adaptive Fuzzy Sliding-Mode Control for Decoupled Nonlinear Systems)

  • 김도우;양해원;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.719-727
    • /
    • 2002
  • We proposed a decoupled adaptive fuzzy sliding-mode control scheme for a class of fourth-order nonlinear systems. The system is decoupled into two second-order systems such that each subsystem has a separate control target expressed in terms of sliding surface. For these sliding surfaces, we define main and sub target conditions. and, we made intermediate variables which are interconnected both surface conditions from the sub target sliding surface. Then, Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target sliding surface including intermediate variables. The membership functions of the THEN-part, which is used to construct a suitable equivalent control of sliding-mode control, are changed according to the adaptive law. With such a design scheme, we not only maintain the distribution of membership functions over state space but also reduce the computing time considerably. We apply the decoupled adaptive sliding-mode control to a nonlinear Cart-Pole system and confirms the validity of the proposed approach.

Design of Sliding-mode Observer for Robust Speed Sensorless Induction Motor Drive

  • Son, Young-Dae;Lee, Jong-Nyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.488-492
    • /
    • 2004
  • In this paper, the design of a speed sensorless vector control system for induction motor is performed by using a new sliding mode technique based on current model flux observer. A current and flux observer based on the current estimation error is constructed. The proposed current observer includes a sliding mode function, which is derivative of the flux. That is, sliding mode observer which allows the estimation of both the rotor speed and flux based on the measurement of motor terminal quantities, would be proposed. And, a synergetic speed controller using the estimated speed signal is designed to stabilize the speed loop. Simulation results are presented to confirm the theoretical analysis, and to show the system performance with different observer gains and the influence of the motor parameter.

  • PDF

타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어 (ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre)

  • 김정식
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.