• Title/Summary/Keyword: Sliding line

Search Result 151, Processing Time 0.024 seconds

A Study on Determination of Quantitative Aberration Using Lateral-Shearing Interferometer (층밀리기 간섭계에 의한 정량적 수차산출에 관한 연구)

  • 김승우;김병창;조우종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.459-463
    • /
    • 1996
  • The lateral-shearing interferometer specially devised for production line inspection lenses is presented. The interferometer is composed with immersion oil and four prisms whose relative sliding motion provide lateral-shearing and phase-shifting. A special phase-measuring algorithm of a-bucket is adopted to compensate the phase-shifting error caused by the thickness reduction in the immersion oil Three different algorithm for determinating quantitative aberration of aspherical lenses are presented and compared with one another.

  • PDF

Interior Noise Reduction for Subway Railroad Vehicles (통근형 지하철의 실내소음저감)

  • 김종년;유동호;박경환
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.265-272
    • /
    • 1998
  • In this paper, the intoner noise reduction for subway railroad vehicles was studied by improving transmission loss of carbody panels and side doors, and on-line tests were conducted to examine the exterior noise levels at various running conditions. Also the transmission loss for design candidates of the carbody specimen was measured in two reverberation rooms. From the results of the tests, side door gap is the most dominant factor affecting the Interior noise level of subway railroad cars with a sliding typed side door. The next one is revealed to transmission loss of a floor panel. To improve the transmission loss of the carbody, many activities were conducted such as, treatment of resilient and sound-absorbing materials and reducing the gap of the side door by adopting a brush and rubber, etc. The estimated interior noise level for modified car which is designed with improved carbody panels is lower than original car by about 5㏈.

  • PDF

A speed predictive control of the AC servo motor using DSP processor (DSP를 사용한 AC 서보 모터의 속도 예측 제어)

  • 김진환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.22-28
    • /
    • 1998
  • This paper includes AC servo motor speed control usig the predictive control strategy. Generally, AC servo motor control should have the fast response characteristics. For the issue, sliding mode control and PID control have been applied. However, the former has the speed ripple response due to the chattering and the latter requires the many trial efforts. Originally, the predictive control which has been used in process control area does not need the priori knowledge for the application system and it is easy to compute the optimal gain with the prediction. In this paper, the TMS320C31 DSP pocessor is used for AC motor control with fst dynamics and the tuning guid-line for the parameters of the predictive control algorithm is given in order to reduce the computation load. Also, the actuator saturationis implemented uisngthe QP(Quadratic Programming) method and the transient response is improved by the identified intertia coefficient when AC motor is drived at forward/reverse rotation.

  • PDF

A Study on the Plane Figure of Elementary School Mathematics in the View of Classification (분류의 관점에서 초등수학 평면도형 고찰)

  • Kim, Hae Gyu;Lee, Hosoo;Choi, Keunbae
    • East Asian mathematical journal
    • /
    • v.37 no.4
    • /
    • pp.355-379
    • /
    • 2021
  • In this article, we investigated plane figures introduced in elementary school mathematics in the perspective of traditional classification, and also analyzed plane figures focused on the invariance of plane figures out of traditional classification. In the view of traditional classification, how to treat trapezoids was a key argument. In the current mathematics curriculum of the elementary school mathematics, the concept of sliding, flipping, and turning are introduced as part of development activities of spatial sense, but it is rare to apply them directly to figures. For example, how are squares and rectangles different in terms of symmetry? One of the main purposes of geometry learning is the classification of figures. Thus, the activity of classifying plane figures from a symmetrical point of view has sufficiently educational significance from Klein's point of view.

Seismic Vulnerability Analysis of River Levee by Earthquake Return Period (지진 재현주기에 따른 하천 제방의 지진취약성 분석)

  • Kim, Kyung-Oh;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.679-686
    • /
    • 2020
  • In this study, the seismic vulnerability of public river levees was analyzed quantitatively. Input seismic waves were generated in Pohang seismic waves in return periods of 200, 500, 1000, and 2400 years. The behavior of the levee was analyzed by seismic vulnerability analysis according to the return period. The displacement that occurs during an earthquake showed the same tendency as the input seismic wave and was largest in the return period of 2400 years. An analysis of the sliding stability revealed a 31.5% and 26.7% decrease in the sliding safety factor for the return period of 2400 for the landside and waterside, respectively. An examination of liquefaction by the q/p' ratio showed that the seepage line inside the embankment rises due to earthquakes. As a result, in the case of a return period of 2400 years, most embankments generate liquefaction, making them vulnerable to earthquakes. Through this research, it will be necessary to re-establish domestic seismic-design standards and establish clear standards for the results through a dynamics method.

The Position Control of Induction Motor using Reaching Mode Controller and Neural Networks (리칭모드 제어기와 신경 회로망을 이용한 유도전동기의 위치제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.72-83
    • /
    • 2000
  • This paper presents the implementation of the position control system for 3 phase induction motor using reaching mode controller and neural networks. The reaching mode controller is used to bring the position error and speed error trajectories toward the sliding surface and to train neural networks at the first time. The structure of the reaching mode controller consists of the switch function of sliding surface. And feedforward neural networks approximates the equivalent control input using the reference speed and reference position and actual speed and actual position measured form an encoder and, are tuned on-line. The reaching mode controller and neural networks are applied to the position control system for 3 phase induction motor and, are compared with a PI controller through computer simulation and experiment respectively. The results are illustrated that the output of reaching mode controller is decreased and feedforward neural networks take charge of the main part for the control action, and the proposed controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

  • PDF

A Study on the Section Change Using the Slip-Form Method (슬립폼 공법 적용 시 단면변화에 대한 고찰)

  • Suh, Jin-Sun;Han, Jun-Young;Im, Chil-Soon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.123-128
    • /
    • 2007
  • Already, core wall construction method for apartment wall structure and general building special areas applied the engineering method's appropriate examination. Also, trial and error depending on slip-form method is a good examination opportunity to consider. In the present paper's slip-form engineering method l)Casting concrete to slab in sliding 2)RC structure + SRC structure (part of segment) 3)Inside segment variation(straight line-diagonal-circle) are together while determining whether it is possible not to carry out actual construction work on the structure. Finally, small problems continuously appear on actual slip-form method application, design and engineering, starting with planning thoroughly the field examination and diagnosing the atmosphere, minimizing cost, secure work safety facilities characterized by good quality, slip-form research extension, development and decision-making.

  • PDF

Dubins Path Generation and Tracking of UAVs With Angular Velocity Constraints (각속도 제한을 고려한 무인기의 Dubins 경로 생성 및 추적)

  • Yang, You-young;Jang, Seok-ho;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • In this paper, we propose a path generation and tracking algorithm of an unmanned air vehicle in a two-dimensional plane given the initial and final points. The path generation algorithm using the Dubins curve proposed in this work has the advantage that it can be applied in real time to an unmanned air vehicle. The path tracking algorithm is an algorithm similar to the line-of-sight induction algorithm. In order to efficiently control the direction angle, a gain related to the look ahead distance concept is introduced. Most of UAVs have the limited maximum curvature due to the structural constraints. A numerical simulation is conducted to follow the path generated by the sliding mode controller considering the angular velocity limit. The path generation and tracking performance is verified by comparing the suggested controller with conventional control techniques.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Durability Evaluation on Doorstep Equipments Used for Low and High Level Platforms at Railway Vehicle (철도차량의 저상 및 고상 승강장 겸용 승강문 스텝에 대한 내구성 평가)

  • Kim, Chul-Su;Park, Min-Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3889-3894
    • /
    • 2012
  • The platform of railroad station for domestic passenger train has been operated at two categories like the platforms if low level(500mm, mainline) and high level(1,135mm, metropolitan subway line). To operate both metropolitan subway line and mainline railroad safely, it is essential to develop the doorstep equipment of railway vehicle regardless of low and high level platforms. On the other hand, the domestic test standard at durability and reliability of doorstep equipment has not been existed until now. This study aims at the development on doorstep equipment of telescopic sliding type for low and high level platforms. Durability analysis with VPD(Virtual Product Development) techniques are performed and the durability standard & qualification life through the rig test during no failure test time is examined in accordance with reliability qualification test.