• Title/Summary/Keyword: Sliding friction

Search Result 836, Processing Time 0.025 seconds

Earth Pressure on the Cylindrical Wall in Cohesionless Soils (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압)

  • 천병식;신영완
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.175-187
    • /
    • 2003
  • The earth pressure acting on the cylindrical retaining wall in cohesionless soils is different from that on the retaining wall in plane strain condition due to three dimensional arching effect. Accurate estimation of earth pressure is required for the design of vertical cylindrical retaining wall. Failure modes of the ground behind vertical shaft are dependent on ground in-situ stress conditions. Failure modes are actually divided into two modes of cylindrical failure mode and funnel-shaped mode with truncated cone surface. Several researchers have attempted to estimate the earth pressure on cylindrical wall for each failure mode, but they have some limitations. In this paper, several equations for estimating the earth pressure on cylindrical wall in cohesionless soils are investigated and new formulations for two failure modes are suggested. It rationally takes into account the overburden pressure, wall friction, and force equilibriums on sliding surface.

Observation of Tribologically Transformed Structures and fretting Wear Characteristics of Nuclear Fuel Cladding (핵연료 봉의 마찰변태구조 관찰과 프레팅 마멸 특성)

  • Kim, Kyeong-Ho;Lee, Min-Ku;Rhee, Chang-Kyu;Wey, Myeong-Yong;Kim, Whung-Whoe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2581-2589
    • /
    • 2002
  • In this research, fretting tests were conducted in air to investigate the wear characteristics of fuel cladding materials with the fretting parameters such as normal load, slip amplitude, frequency and the number of cycles. A high frequency fretting wear tester was designed for this experiment by KAERI. After the experiments, the wear volume and the shape of wear contour were measured by the surface roughness tester. Tribologically transformed structures(TTS) were analysed by means of optical and scanning electron microscopes to identify the main wear mechanisms. The results of this study showed that the wear volume were increased with increasing slip amplitude, and the shape of wear contour was transformed V-type to W-type. Also, it was found that the critical slip amplitude was 168${\mu}{\textrm}{m}$. These phenomena mean that wear mechanism transformed partial slip to gross slip to accelerate wear volume. The wear depth increased with an increase of friction coefficient due to increase of normal load and frequency. The fretting wear mechanisms were believed that, after adhesion and surface plastic deformation occurred by relative sliding motion on the contact between two specimens, TTS creation was induced by surface strain hardening and wear debris were detached from the contact surface which were produced by the micro crack propagation and creation.

Study on Dimensional Change in Wire Product During Wire-Drawing Process (선재 인발공정에서 인발제품의 선경변화에 대한 연구)

  • Moon, Chang-Sun;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.723-730
    • /
    • 2012
  • During the cold wire-drawing process, the diameter of a wire is reduced and the length of the wire is increased as the wire passes through the die. The pressure and sliding motion at the interface between the wire and die cause elastic recovery of the workpiece and friction and wear on the die. In addition, wire deformation and frictional heating raise the temperature of the wire and die, resulting in difficulty in manufacturing the drawn products according to a designated inner diameter of the die, deviating from the designated dimension or the inner diameter of the die. In this study, considering the die temperature distribution, the effects of dimensional changes of the drawn products were analyzed quantitatively; these changes are caused by the elastic deformation of the die, the elastic recovery of the workpiece, and the thermal deformation of both the die and the workpiece. It was confirmed that the elastic recovery of the workpiece influenced these changes the most. The initial dies considering these factors could avoid deviation from the designated dimension, and the desired drawn products were obtained by using the designed initial drawing dies.

Tribological Characteristics of TiC, TiN and TiC/TiN Coatings (TiC, TiN과 TiC/TiN 코팅의 트라이볼로지 특성)

  • Jeon, Chan Yeal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1253-1258
    • /
    • 2014
  • The tribological properties of TiC, TiN and TiC/TiN coatings on steels prepared by the cathodic-arc (CA) ion plating technique were investigated. Experiments were carried out on a tribo-test machine using a Falex journal V block system. The friction and wear characteristics of the coatings were determined by varying the applied load and sliding speed. The TiC, TiN and TiC/TiN coatings markedly increased the tribological characteristics of the surface. As far as a single layer coating was concerned, TiN goes better results than TiC. However, the TiC/TiN multilayer coating performed better than either single layer coating. The major factor in the improved performance of the multilayer coating was the role of TiC in improving the adhesion between the external TiN layer and the substrate steel.

Influence of Lithiation on Nanomechanical Properties of Silicon Nanowires Probed with Atomic Force Microscopy

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.110-110
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value for lithiated silicon nanowire and a higher value for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value than that of the Si nanowire substrate by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The Young's modulus obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively higher value than lithiated silicon nanowire due to the elastically soft amorphous structures. The frictional forces acting on the tip sliding on the surface of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

  • PDF

A Study on the Stress Analysis of Oil Hydraulic Piston Pump with a Swash Plate Type (사판식 유압 피스톤 펌프의 응력해석에 관한 연구)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2424-2429
    • /
    • 2015
  • In an oil hydraulic piston pump, the cylinder block and valve plate in high speed relative sliding motion have the characteristics which should be extremely controlled for the optimization of leakage and friction losses, and pressure-resistance design of them is very important for high pressure performance. But the studies on the stress analysis of those parts have not been performed briskly. Therefore, in this paper, the stress and displacement distributions of the cylinder block and valve plate in the oil hydraulic piston pump with a swash plate type are discussed through the static stress analysis using CATIA V5. The stress and displacement of the cylinder block are more influenced by the axial pressure than by the radial pressure, and are larger by approximately 66% and 30%, respectively. The results show that a review of the material and shape of the valve plate is required.

Thermal, Tribological, and Removal Rate Characteristics of Pad Conditioning in Copper CMP

  • Lee, Hyo-Sang;DeNardis, Darren;Philipossian, Ara;Seike, Yoshiyuki;Takaoka, Mineo;Miyachi, Keiji;Furukawa, Shoichi;Terada, Akio;Zhuang, Yun;Borucki, Len
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.67-72
    • /
    • 2007
  • High Pressure Micro Jet (HPMJ) pad conditioning system was investigated as an alternative to diamond disc conditioning in copper CMP. A series of comparative 50-wafer marathon runs were conducted at constant wafer pressure and sliding velocity using Rohm & Haas IC1000 and Asahi-Kasei EMD Corporation (UNIPAD) concentrically grooved pads under ex-situ diamond conditioning or HPMJ conditioning. SEM images indicated that fibrous surface was restored using UNIPAD pads under both diamond and HPMJ conditioning. With IC1000 pads, asperities on the surface were significantly collapsed. This was believed to be due to differences in pad wear rates for the two conditioning methods. COF and removal rate were stable from wafer to wafer using both diamond and HPMJ conditioning when UNIPAD pads were used. Also, HPMJ conditioning showed higher COF and removal rate when compared to diamond conditioning for UNIPAD. On the other hand, COF and removal rates for IC1000 pads decreased significantly under HPMJ conditioning. Regardless of pad conditioning method adopted and the type of pad used, linear correlation was observed between temperature and COF, and removal rate and COF.

Coil Gun Electromagnetic Launcher (EML) System with Multi-stage Electromagnetic Coils

  • Lee, Su-Jeong;Kim, Ji-Hun;Song, Bong Sob;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.481-486
    • /
    • 2013
  • An electromagnetic launcher (EML) system accelerates and launches a projectile by converting electric energy into kinetic energy. There are two types of EML systems under development: the rail gun and the coil gun. A railgun comprises a pair of parallel conducting rails, along which a sliding armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail, but the high mechanical friction between the projectile and the rail can damage the projectile. A coil gun launches the projectile by the attractive magnetic force of the electromagnetic coil. A higher projectile muzzle velocity needs multiple stages of electromagnetic coils, which makes the coil gun EML system longer. As a result, the installation cost of a coil gun EML system is very high due to the large installation site needed for the EML. We present a coil gun EML system that has a new structure and arrangement for multiple electromagnetic coils to reduce the length of the system. A mathematical model of the proposed coil gun EML system is developed in order to calculate the magnetic field and forces, and to simulate the muzzle velocity of a projectile by driving and switching the electric current into multiple stages of electromagnetic coils. Using the proposed design, the length of the coil gun EML system is shortened by 31% compared with a conventional coil gun system while satisfying a target projectile muzzle velocity of over 100 m/s.

Analysis of Pressure Relief Valve Considering Interaction between Valve Stem Motion and Flow (압력 릴리프 밸브 스템부 운동 및 유동 연계해석 기법)

  • Cho, Nam-Kyung;Shin, Dong-Soon;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.121-127
    • /
    • 2007
  • Direct acting pressure relief valve applicable to propellant tank of launch vehicle is modeled in this study The flow resistance of the partially opened valve is modeled as a function of the distance of the valve stem from the resting position. The position of the valve varies transiently as a function of its mass, the spring force, sliding friction, and the pressure differential. Choking at valve throat and compressibility are considered for the analysis. This study presents systematic analysis method for pressure relief valve applicable to propellant tank of liquid rocket. The results shows transient flow resistance caused by stem motion and the importance of choking at valve throat for pressure relief valve design.

  • PDF

Ultimate Behavior of High-Tension Bolted Joints Considering Plate Thickness and Bolt Size (판 두께와 볼트 크기를 고려한 고장력 볼트 이음부의 극한 거동)

  • Kim, Sung-Bo;Choi, Jong-Kyoung;Heo, In-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.515-524
    • /
    • 2008
  • The ultimate behavior of high-tension bolted joints with various plate thickness and bolt size is investigated using nonlinear F.E. analysis and experimental study. The relation with sliding load, bolt deformation, and failure modes are presented based on plate thickness and bolt size. Three kinds of the bolt diameter(M20, M22, M24) and five types of the steel plates (l2mm, 16mm, 20mm, 30mm, 40mm) are considered for the ultimate behavior of the bolted joints. The numerical model, constructed by commercial F.E. program, ABAQUS, of ultimate behavior of bolted joints is introduced and verified by experimental results. The force-displacement and force-axial strain relations are measured and compared with the results by 3D finite element analysis.