• 제목/요약/키워드: Sliding device

검색결과 129건 처리시간 0.024초

대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계 (Design of Semi-Active Tendon for Vibration Control of Large Structures)

  • 김상범;윤정방;구자인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

디지털 3차원 실물복제기 시스템 및 공정기술 개발 (Development of Digital 3D Real Object Duplication System and Process Technology)

  • 김동수;안영진;이원희;최병호;장민호;백영종;최경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.732-737
    • /
    • 2005
  • Distal 3D Real Object Duplication System(RODS) consists of 3D Scanner and Solid Freeform Fabrication System(SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and a industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer(SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. Also, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Multi-Laser Sintering(SMLS) process and 3-axis dynamic Focusing Scanner for scanning large area instead of the existing $f\theta$ lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, scan spacing. Now, this study is in progress to eveluate the effect of experimental parameters on the sintering process.

  • PDF

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

티타늄 초소수성 표면의 수명 향상을 위한 레이저 처리 기법 개발 및 내수명성 평가법 개발 (Development of Laser Processing Technology and Life Evaluation Method for Lifespan Improvement of Titanium Superhydrophobic Surface)

  • 정경은;박경렬;최용석;강성민;김운성;정송이;이경준
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.91-96
    • /
    • 2024
  • Recently, extensive studies have been carried out to enhance various performance aspects such as the durability, lifespan, and hardness by combining diverse materials or developing novel materials. The utilization of superhydrophobic surfaces, particularly in the automotive, textile, and medical device industries, has gained momentum to achieve improved performance and efficiency. Superhydrophobicity refers to a surface state where the contact angle when water droplets fall is above 150°, while the contact angle during sliding motion is smaller than 10°. Superhydrophobic surfaces offer the advantage of water droplets not easily sliding off, maintaining a cleaner state as the droplets leave the surface. Surface modification involves two fundamental steps to achieve superhydrophobicity: surface roughness increase and surface energy reduction. However, existing methods, such as time-consuming processes and toxic organic precursors, still face challenges. In this study, we propose a method for superhydrophobic surface modification using lasers, aiming to create roughness in micro/nanostructures, ensuring durability while improving the production time and ease of fabrication. The mechanical durability of superhydrophobic samples treated with lasers is comparatively evaluated against chemical etching samples. The experimental results demonstrate superior mechanical durability through the laser treatment. Therefore, this research provides an effective and practical approach to superhydrophobic surface modification, highlighting the utility of laser treatment.

Detection Method for Bean Cotyledon Locations under Vinyl Mulch Using Multiple Infrared Sensors

  • Lee, Kyou-Seung;Cho, Yong-jin;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.263-272
    • /
    • 2016
  • Purpose: Pulse crop damage due to wild birds is a serious problem, to the extent that the rate of damage during the period of time between seeding and the stage of cotyledon reaches 45.4% on average. This study investigated a method of fundamentally blocking birds from eating crops by conducting vinyl mulching after seeding and identifying the growing locations for beans to perform punching. Methods: Infrared (IR) sensors that could measure the temperature without contact were used to recognize the locations of soybean cotyledons below vinyl mulch. To expand the measurable range, 10 IR sensors were arranged in a linear array. A sliding mechanical device was used to reconstruct the two-dimensional spatial variance information of targets. Spatial interpolation was applied to the two-dimensional temperature distribution information measured in real time to improve the resolution of the bean coleoptile locations. The temperature distributions above the vinyl mulch for five species of soybeans over a period of six days from the appearance of the cotyledon stage were analyzed. Results: During the experimental period, cases where bean cotyledons did and did not come into contact with the bottom of the vinyl mulch were both observed, and depended on the degree of growth of the bean cotyledons. Although the locations of bean cotyledons could be estimated through temperature distribution analyses in cases where they came into contact with the bottom of the vinyl mulch, this estimation showed somewhat large errors according to the time that had passed after the cotyledon stage. The detection results were similar for similar types of crops. Thus, this method could be applied to crops with similar growth patterns. According to the results of 360 experiments that were conducted (five species of bean ${\times}$ six days ${\times}$ four speed levels ${\times}$ three repetitions), the location detection performance had an accuracy of 36.9%, and the range of location errors was 0-4.9 cm (RMSE = 3.1 cm). During a period of 3-5 days after the cotyledon stage, the location detection performance had an accuracy of 59% (RMSE = 3.9 cm). Conclusions: In the present study, to fundamentally solve the problem of damage to beans from birds in the early stage after seeding, a working method was proposed in which punching is carried out after seeding, thereby breaking away from the existing method in which seeding is carried out after punching. Methods for the accurate detection of soybean growing locations were studied to allow punching to promote the continuous growth of soybeans that had reached the cotyledon stage. Through experiments using multiple IR sensors and a sliding mechanical device, it was found that the locations of the crop could be partially identified 3-5 days after reaching the cotyledon stage regardless of the kind of pulse crop. It can be concluded that additional studies of robust detection methods considering environmental factors and factors for crop growth are necessary.

Highly Reliable Triboelectric Rotational Energy Scavenger

  • Lee, Younghoon;Lee, Bada;Choi, Dukhyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.397-397
    • /
    • 2016
  • Triboelectric nanogenerators (TENG) can produce power from ambient mechanical sources and have strong points of high output performance, light weight, low cost, and easy manufacturing process. It is expected that TENG can be utilized in the fields of wireless electronics and self-powered devices in the world which pays attention to healthcare and the IoT. In this work, we focus on scavenging ambient rotational energy by using a durably designed TENG. In previous studies regarding harvesting rotation mode energy, the devices were based on sliding mechanism and durability was not considered as a major issue. However friction by rotation causes reliability problems due to wear and tear. Therefore, in this study, we convert rotary motion to linear motion utilizing a cam by which we can then utilize contact-mode TENG and improve device reliability. In order to increase output performance, bumper springs were used below the TENG and the optimum value for the bumper spring constant was analyzed theoretically. Furthermore, the inserting a soft substrate was proposed and its effect on high output was determined to be due to an increase in the contact area. By increasing the number of cam noses, the output frequency was shown to increase linearly. For the purpose of maximum power transfer, the input impedance of the device was determined. Finally, to demonstrate the use of the C-TENG as a direct power source, it was installed on a commercial bicycle wheel and connected to 180 LEDs. In conclusion we present a rotational motion TENG energy scavenger system designed for enhanced durability and optimized output by appropriate choice of spring constants and substrate.

  • PDF

침대 이송 기능을 갖춘 수동식 휠체어 설계 (Design of Manual Wheelchair with a Function of Bed Transfer)

  • 고현준;김남열;현정근;정우철;강모원;김종형
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.580-586
    • /
    • 2013
  • In general, manual wheelchairs have played important roles in moving patients from one place to another. However, patients have experienced discomfort getting on and off because of the need for physical assistance. This can be more serious if a patient has handicaps involving the arms or legs. In addition, it could be unpleasant for both the patient and assistant because of the need for extensive physical contact with each other. At times, a weak nurse feels that there is a risk when transferring a heavy patient from a bed to a wheelchair. In this paper, a new non-powered wheelchair is designed to assist in transferring a patient to their bed. This design considers the convenience of both the patient and assistant when the patient is transferred from a wheelchair to a bed and vice versa. The operation minimizes the physical contact between the assistant and the patient. The new wheelchair is also lightweight and portable compared with the normal popular wheelchair.

자동차 헤드램프 내의 에이밍 볼트의 풀림 해석 및 실험 (Analysis of Self Loosening of Aiming Bolts in Vehicle Head Lamp)

  • 문지승;백홍;박상신;박종명
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.65-70
    • /
    • 2019
  • Self-loosening of bolts owing to external forces occurs in several machines that are clamped by bolts and nuts. This study focuses on the self-loosening of the aiming bolt of the head lamp in a vehicle. It is important to prevent the aiming bolt from self-loosening as it has a decisive effect on the angle of the head lamp. A nut clamped with a bolt, known as a retainer, is made of plastic and has a partial screw thread. In addition, a transverse load has a considerable impact on the self-loosening of a bolt. We concentrate on the self-loosening of a bolt by a transverse load. The aim of this study is to define the limits of the external force that loosen the bolt. Based on the above conditions, we derive a theoretical equation and develop a numerical analysis program that can calculate the limiting forces for self-loosening. To verify the developed program, we design a test device that can measure the self-loosening by applying sliding forces to the aiming bolt. Using this method, we can draw the following conclusions. First, the developed testing device is suitable to prove the theory for calculating the self-loosening force. Second, the equation confirms the relationship of bolt self-loosening between resistance torque and shear force. Finally, the equation obtains the minimum value of the resistance torque required to decrease the change in the angle of the head lamp, thereby improving the possibility of increasing the stability of the head lamp.

유연성 천공기를 이용한 Bankart 병변의 골관통식 봉합 - 동물 실험 및 예비 임상 결과 보고 - (Arthroscopic Transosseous Suture Repair for Bankart Lesion with a Flexible Drill Device - An Experimental and Preliminary Clinical Report -)

  • 박진수;원예연;유정한;박용욱;노규철;정국진;김홍균;황지효;이용범;서일우
    • Clinics in Shoulder and Elbow
    • /
    • 제13권1호
    • /
    • pp.72-78
    • /
    • 2010
  • 목적: 견관절의 Bankart 병변에 대하여서 관절경적 수술하에서도 골경유 봉합이 가능하도록 유연성 골 천공기를 개발하였으며 이에 대한 동물 실험 및 임상 증례를 보고하는 바이다. 대상 및 방법: 유연성 천공기 세트는 유연성 천공기와 유도관으로 구성되어 있다. 유연성 천공기는 49개의 미세강선들이 단일 강선 (직경 1.2 mm)으로 꼬인 구조로 이루어져 유연성이 있으며 이러한 유연한 강선의 한 쪽 끝에는 천공기 (직경 1.2 mm)가 용접되어 있는 구조로 이루어져 있다. 유도관은 외경 3.0 mm, 내경 2.0 mm의 원통형 금속 도관으로 이루어져 있으며 한 쪽 끝은 30도 정도 굴곡되어 있다. 기기의 내구성 및 임상적 유용성을 시험하기 위하여 돼지의 견갑골 관절와에 골 천공을 실시하는 실험을 30회 이상 실시하였다. 유연성 강선 부위의 기계적 파단이나 골 천공의 실패 등은 발생하지 않았다. 일반적 견관절 관절경 술식대로 견관절의 후방 입구 및 전 상방, 전 후방 입구들을 확보한 후 관절경하에서 Bankart 병변이 확인이 되면 면도기를 이용하여 견갑와 내측면의 변연 절제를 실시하여 골 출혈을 유도한다. 이후 관절경을 전 상방 입구로 이전 시키고, 후방 입구를 통하여서 유연성 골천공기 세트의 유도 강관을 삽입하는데 유도 강관의 끝이 견갑와연에서 약 5 mm 정도 안쪽에 위치되도록 한다. 유도강관 내로 유연성 천공기를 삽입한 후 구동기를 이용하여서 견갑와의 골 천공을 실시한다. 골 천공 후에는 유연성 천공기만 유도강관에서 제거한 후에 유도 강관내로 봉합사를 삽입하여 천공된 골구로 통과시키도록 한다. 봉합 갈고리를 이용하여 관절와순에 유도봉합사를 통과시킨 후에 이 유도봉합사에 골 천공구를 통과한 봉합사를 끼워서 관절완순을 통과하도록 한 후 활주 결찰을 실시하여 골 관통 봉합을 이루도록 한다. 동일한 방식으로 견갑와의 2시, 4시 방향에 골 천공을 시행하여 견갑와순의 봉합을 실시한다. 결과: 외상성 견관절 탈구 환자 5예에서 유연성 골 천공기를 이용한 Bankart 병변의 봉합을 실시하였다. 수술 도중 또는 수술후의 신경이나 혈관 손상 등의 문제점이나 합병증 등은 발생하지 않았으며 기기 자체의 문제들도 발생하지 않았다. 평균 6개월간의 추시 결과 상에서는 재탈구 등의 증상은 나타나지 않았다. 결론: 유연성 골 천공기를 사용한 Bankart 병변의 봉합시 관절경적 수술이면서도 골 관통식 봉합이 가능하여 관절와순의 부착면적의 증대 효과 뿐 아니라 손쉬운 활주 결찰이 이루어 질 수 있음을 보여주었다.

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E.;Hurlebaus, S.
    • Smart Structures and Systems
    • /
    • 제8권4호
    • /
    • pp.399-412
    • /
    • 2011
  • This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.