• Title/Summary/Keyword: Sliding conditions

Search Result 595, Processing Time 0.03 seconds

Tribological Influence of Kinematic Oil Viscosity Impregnated in Nanopores of Anodic Aluminum Oxide Film (함침 오일 점도에 따른 나노동공 구조의 산화알루미늄 박막의 마찰 및 마멸 거동)

  • Kim, Dae-Hyun;Ahn, Hyo-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.625-630
    • /
    • 2013
  • The friction behavior of a 60-${\mu}m$-thick anodic aluminum oxide (AAO) film having cylindrical nanopores of 45-nm diameter was investigated as a function of impregnated oil viscosity ranging from 3.4 to 392.6 cSt. Reciprocating ball-on-flat sliding friction tests using a 1-mm-diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 to 1 N in an ambient environment. The friction coefficient significantly decreased with an increase in the oil viscosity. The boundary lubrication film remained effectively under all test conditions when high-viscosity oil was impregnated, whereas it was easily destroyed when low-viscosity oil was impregnated. Thin plastic deformed layer patches were formed on the worn surface with high-viscosity oil without evidence of tribochemical reaction and transfer of counterpart material.

The Effects of Heat-treatment on the Mechanical Properties of High Chromium Cast Irons (고크롬 주철의 기계적 특성에 미치는 열처리 영향)

  • Kim, Sug-Won;Kim, Ki-Kon;Park, Jin-Sung;Kim, Dong-Keun;Yoon, Young-Gap
    • Journal of Korea Foundry Society
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • Mechanical characteristics of Hi-Cr cast irons containing 16.8%Cr and 3.0%C were studied with various heat treatments. After as-cast Y-block ingots were annealed fully, the ingots were machined into cylinderical specimens with the size of 9mm in diameter and 20mm in length in order to investigate the effect of heat-treatments on mechanical characteristics of high Cr cast irons. All specimens were heat-treated by quenching- tempering, austempering and cyclic heat at the various temperatures(950, 1000, 1050 and $1100^{\circ}C$) respectively. The wear amount was measured for each heat-treated specimens against the counterpart of a hardened SKD11 steel at the following conditions; wearing velocity: 0.7 m/s, load: 100N and sliding distance: 70 km. After as-cast specimens were annealed, fine $M_{3}C$ carbides were formed, which affected the hardness and the wear resistance of Hi-Cr specimens. High hardness and good wear resistance were appeared on the specimens treated at 950 and $1000^{\circ}C$ and the austempered specimens show excellent wear resistance as well as high hardness.

Dry Friction Characteristics of Bulk Amorphous Thermal Spray Coating and Amorphous Metallic Matrix Composites (벌크 비정질 용사코팅과 비정질 기지 복합재료의 건조 마찰특성)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • The friction behaviors of bulk amorphous thermal spray coating (BAC) and second phase-reinforced composite coatings using a high velocity oxy-fuel spraying process were investigated using a ball-on-disk test rig that slides against a ceramic ball in an atmospheric environment. The surface temperatures were measured using an infrared thermometer installed 50 mm from the contact surface. The crystallinities of the coating layers were determined using X-ray diffraction. The morphologies of the coating layers and worn surfaces were observed using a scanning electron microscope and energy-dispersive spectroscopy. The results show that the friction behavior of the monolithic amorphous coating was sensitive to the testing conditions. Under lower than normal loads, a low and stable friction coefficient of about 0.1 was observed, whereas under a higher relative load, a high and unstable friction coefficient of greater than 0.3 was obtained with an instant temperature increase. For the composite coatings, a sudden increase in friction coefficient did not occur, i.e., the transition region did not exist and during the friction test, a gradual increase occurred only after a significant delay. The BAC morphology observations indicate that viscous plastic flow was generated with low loads, but severe surface damage (i.e., tearing) occurred at high loads. For composite coatings, a relatively smooth surface was observed on the worn surface for all applied loads.

Analysis of Geothermal Melting System Conductivity for Improving Road Safety (도로주행 안정성 향상을 위한 지열 융설시스템 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Lee, Seung-Ha;Seo, Un-Jong;Kim, Jin-Han;Lee, Joo-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Sliding accidents on the road have a high percentage by road freezing, especially, they often have appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out; pavement materials of concrete and asphalt where the system is buried. The heat transfer simulation is essential when the geothermal snow melting system is applied according to heating exchanger pipe placed in the lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. Many variables are discovered from numerical analyses under the same conditions with model test.

  • PDF

Numerical Analysis of Relief Well Effect for Seepage Control of Small Fill Dam (소규모 필댐의 침투수 관리를 위한 감압정 효과에 대한 수치해석)

  • Chang, Jaehoon;Yoo, Chanho;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.2
    • /
    • pp.5-13
    • /
    • 2020
  • The relief wells have been studied to be effective in seepage control in small dams such as agricultural dams. However, quantitative studies on the effects of the relief well are rare and there is no design standard also. To quantitatively analyze the effects of the seepage control in small dams, the research of up-lift pressure influencing the toe of dam body was conducted by seepage analysis, which investigates the behavior characteristics, according to the conditions of dam and foundation. The effect of seepage control was studied by analyzing the reduction effect of up-lift pressure at foundation ground of the toe of downstream dam slope depending on the installation of the relief well. As a result, it was found that the relief wells are effective in reducing the pore water pressure in the foundation, which can cause piping and sliding failure.

A Study of Wear Behavior for Sealing Graphite at Elevated Temperature (씰링 그라파이트의 고온 마모 거동에 관한 연구)

  • Kim, Yeonwook;Kim, Jaehoon;Yang, Hoyoung;Park, Sunghan;Lee, Hwankyu;Kim, Bumkeun;Lee, Seungbum;Kwak, Jaesu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • Graphite is commonly used as a solid lubricant leading to low friction coefficient and abrasion. In this study, wear behavior of sealing graphite(HK-6) at elevated temperature was evaluated. Reciprocating wear test was carried out as wear occurred graphite as a seal(HK-6) is positioned between the liner and driving shaft. Variables which are temperature, sliding speed and contact load are set. This study suggest optimized environment conditions through the wear properties of graphite.

Fabrication Methods of Porous Ceramics and Their Applications in Advanced Engineering - Large Flat Precision Plate for Flat Display Industries

  • Matsumaru, Koji;Ishizaki, Kozo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.3.1-3.1
    • /
    • 2009
  • Normal sintering process of producing porous ceramics is not to sinter perfectly, i.e., stop sintering in middle-process. Our porous ceramic materials are a product of complete sintering. For example if one want to make a porous carborundum, raw carborundum powder is sintered at either lower temperatures than normal sintering temperature or shorter sintering periods than normal sintering time to obtain incompletely sintered materials, i.e., porous carborundum. This implies normally sintered porous ceramic materials can mot be used in high vacuum conditions due to dust coming out from uncompleted sintering. We could produce completely sintered porous ceramic materials. For example, we can produce porous carborundum material by using carborundum particles bonded by glassy material. The properties of this material are similar to carborundum. We could make quasi-zero thermal expansion porous material by using carborundum and particles of negative thermal expansion materials bonded by the glassy material. We apply to sinter them also by microwave to sinter quickly. We also use HIP process to introduce closed pores. We could sinter them in large size to produce $2.5m{\times}2.5m$ ceramic plate to use as a precision plate for flat display industries. This flat ceramic plate is the world largest artificial ceramic plate. Precision plates are basic importance to any advanced electronic industries. The produced precision plate has lower density, lower thermal expansivity, higher or similar damping properties added extra properties such as vacuum vise, air sliding capacity. These plates are highly recommended to use in flat display industries. We could produce also cylindrical porous ceramics materials, which can applied to precision roller for polymer film precision motion for also electronic industries.

  • PDF

Evaluation of Stability of Quay Wall Considering Overtopping of Tsunami (지진해일파의 월파를 고려한 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.31-45
    • /
    • 2012
  • This study was conducted to estimate the stability of a quay wall in case of wave overtopping under the combined action of an earthquake and tsunami using limit equilibrium method. The tsunami force was calculated by using a numerical program called TWOPM-3D (3-D one-field Model for immiscible TWO-Phase flows). Especially, the wave force acting behind the quay wall after a tsunami wave overtopping was estimated by treating back fill as a permeable material. The stability of the quay wall was assessed for both the sliding and overturning modes under passive and active conditions. The variation in the stability of the quay wall with time was determined by parametric studies, including those for the tsunami wave height, seismic acceleration coefficient, internal friction angle of the soil, wall friction angle, and pore water pressure ratio. When the earthquake and tsunami were considered simultaneously, the tsunami induced wave overtopping increased the stability of the quay wall under the passive condition, but in the active condition, the safety factors decreased.

The Numerical Simulation of Unsteady Flow in a Mixed flow Pump Guide Vane

  • Li, Yi-Bin;Li, Ren-Nian;Wang, Xiu-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.200-205
    • /
    • 2013
  • In order to investigate the characteristics of unsteady flow in a mixed flow pump guide vane under the small flow conditions, several indicator points in a mixed flow pump guide vane was set, the three-dimensional unsteady turbulence numerical value of the mixed flow pump which is in the whole flow field will be calculated by means of the large eddy simulation (LES), sub-grid scale model and sliding mesh technology. The experimental results suggest that the large eddy simulation can estimate the positive slope characteristic of head & capacity curve. And the calculation results show that the pressure fluctuation coefficients of the middle section in guide vane inlet will decrease firstly and then increase. In guide vane outlet, the pressure fluctuation coefficients of section will be approximately axially symmetrical distribution. The pressure fluctuation minimum of section in guide vane inlet is above the middle location of the guide vane suction surface, and the pressure fluctuation minimum of section in which located the middle and outlet of guide vane. When it is under the small flow operating condition, the eddy scale of guide vane is larger, and the pressure fluctuation of the channel in guide vane being cyclical fluctuations obviously which leads to the area of eddy expanding to the whole channel from the suction side. The middle of the guide vane suction surface of the minimum amplitude pressure fluctuation to which the vortex core of eddy scale whose direction of fluid's rotation is the same to impeller in the guide vane adhere.

Friction and Wear Properties of Boron Carbide Coating under Various Relative Humidity

  • Pham Duc-Cuong;Ahn Hyo-Sok;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • Friction and wear properties of the Boron carbide ($B_{4}C$) coating 100 nm thickness were studied under various relative humidity (RH). The boron carbide film was deposited on silicon substrate by DC magnetron sputtering method using $B_{4}C$ target with a mixture of Ar and methane ($CH_4$) as precursor gas. Friction tests were performed using a reciprocation type friction tester at ambient environment. Steel balls of 3 mm in diameter were used as counter-specimen. The results indicated that relative humidity strongly affected the tribological properties of boron carbide coating. Friction coefficient decreased from 0.42 to 0.09 as the relative humidity increased from $5\%$ to $85\%$. Confocal microscopy was used to observe worn surfaces of the coating and wear scars on steel balls after the tests. It showed that both the coating surface and the ball were significantly worn-out even though boron carbide is much harder than the steel. Moreover, at low humidity ($5\%$) the boron carbide showed poor wear resistance which resulted in the complete removal of coating layer, whereas at the medium and high humidity conditions, it was not. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses were performed to characterize the chemical composition of the worn surfaces. We suggest that tribochemical reactions occurred during sliding in moisture air to form boric acid on the worn surface of the coating. The boric acid and the tribochemcal layer that formed on steel ball resulted in low friction and wear of boron carbide coating.