• 제목/요약/키워드: Sliding and hopping

검색결과 5건 처리시간 0.022초

블록 프로세싱 기법을 이용한 주파수 영역에서의 회귀 최소 자승 알고리듬 (Frequency-Domain RLS Algorithm Based on the Block Processing Technique)

  • 박부견;김동규;박원석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.240-240
    • /
    • 2000
  • This paper presents two algorithms based on the concept of the frequency domain adaptive filter(FDAF). First the frequency domain recursive least squares(FRLS) algorithm with the overlap-save filtering technique is introduced. This minimizes the sum of exponentially weighted square errors in the frequency domain. To eliminate discrepancies between the linear convolution and the circular convolution, the overlap-save method is utilized. Second, the sliding method of data blocks is studied Co overcome processing delays and complexity roads of the FRLS algorithm. The size of the extended data block is twice as long as the filter tap length. It is possible to slide the data block variously by the adjustable hopping index. By selecting the hopping index appropriately, we can take a trade-off between the convergence rate and the computational complexity. When the input signal is highly correlated and the length of the target FIR filter is huge, the FRLS algorithm based on the block processing technique has good performances in the convergence rate and the computational complexity.

  • PDF

마찰력이 개재된 반복충돌 혼돈 동역학의 수치해석적 연구 -진동보울피더 (Numerical Study on Chaotic Dynamics of Repeated Impacts with Friction - Vibratory Bowl Feeders)

  • 한인환;이윤재;윤구영
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.143-152
    • /
    • 1996
  • The vibratory bowl feeder is the most versatile of all hopper feeding devices for small engineering parts, and the typical nonlinear dynamic system experiencing repeated impacts with friction. We model and analyze the dynamic behavior of a single part on the vibrating track of the bowl feeder. While the previous studies are restricted to the sliding regime, we focus our analysis on the hopping regime where the high conveying rate is available. We present the numerical analysis results for conveying rate and frictional impact process both in periodic and chaotic regimes. We examined the dynamic effects from the variation of several physical parameters, and presented the important features for the design of the vibratory bowl feeder. This research holds much potential for leverage over design problems of wide range of mechanisms and tools with repeated collisions.

  • PDF

Optimum Vibration Angle for Transporting Granular Materials on Linear Conveyors

  • Keraita, James Nyambega
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.3-7
    • /
    • 2008
  • Vibratory conveyors are widely used in industry to transport granular materials and products. A theoretical point mass model for vibratory conveying was studied. The results agreed well with experimental observations. The model theory included the resting, sliding and flight states of the material. Each state was considered separately when determining the equations of motion. For the coefficients of restitution, values of zero for the normal component and 0.8 for the tangential component were found to be appropriate for modeling the collisions of the granular particles with the conveying surface. The vibration angle had a large influence on the mode and rate of transport. There was an optimum vibration angle for a given set of conditions. The optimum vibration angle decreased and was better defined as the coefficient of friction increased. The results suggest the existence of an optimum dimensionless track acceleration (throw number), which does not support general industrial practice in which the track acceleration is limited when the feed cycle becomes erratic and unstable.

A Novel Hitting Frequency Point Collision Avoidance Method for Wireless Dual-Channel Networks

  • Quan, Hou-De;Du, Chuan-Bao;Cui, Pei-Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권3호
    • /
    • pp.941-955
    • /
    • 2015
  • In dual-channel networks (DCNs), all frequency hopping (FH) sequences used for data channels are chosen from the original FH sequence used for the control channel by shifting different initial phases. As the number of data channels increases, the hitting frequency point problem becomes considerably serious because DCNs is non-orthogonal synchronization network and FH sequences are non-orthogonal. The increasing severity of the hitting frequency point problem consequently reduces the resource utilization efficiency. To solve this problem, we propose a novel hitting frequency point collision avoidance method, which consists of a sequence-selection strategy called sliding correlation (SC) and a collision avoidance strategy called keeping silent on hitting frequency point (KSHF). SC is used to find the optimal phase-shifted FH sequence with the minimum number of hitting frequency points for a new data channel. The hitting frequency points and their locations in this optimal sequence are also derived for KSHF according to SC strategy. In KSHF, the transceivers transmit or receive symbol information not on the hitting frequency point, but on the next frequency point during the next FH period. Analytical and simulation results demonstrate that unlike the traditional method, the proposed method can effectively reduce the number of hitting frequency points and improve the efficiency of the code resource utilization.

압전작동기로 구동 되는 보울 파트 피더의 모드 해석과 이송 속도 제어 (Modal Analysis and Velocity Control of Bowl Parts Feeder Activated by Piezoactuators)

  • 이동호;최승복;김재환
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.839-847
    • /
    • 2000
  • This paper presents modal analysis and mean conveying velocity (M.C.V.) control of bowl parts feeder activated by piezoactuators. Bowl parts feeders are being widely used in many industry fields for automatic assembly line. In general, the electromagnet has been and being used as exciting actuator of these vibratory bowl feeders. However, because of complexity of its mechanism and limited capability of the electromagnet actuator, there exist various impending problems such as severe noise, nonlinear motion of parts, passive characteristics and so forth. As one of solutions for these problems, piezoelectric actuators as new actuating technology have been proposed recently to excite the bowl parts feeder. In this paper, modal analysis of the proposed model has been performed to examine the modal characteristics of the model by using commercial FEM software and modeling with respects to MCV is constructed. Finally, MCV of the parts is to be controlled to track the desired one with PID controller.