• Title/Summary/Keyword: Slender body ship theory

Search Result 21, Processing Time 0.021 seconds

A Study on the development of Tuna Purse Seiner (참치 선망 어선의 선형개발에 관한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.335-342
    • /
    • 1999
  • The purpose of present research is to develop and efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. Havelock was considered the wave resistance of a post extending vertically downwards through the water from the surface, its section by a horizontal plane being the same at all depths and having its breadth small compared with its length. This enables us to elucidate certain points of interest in ship resistance. However, the ship has not infinite draft. So, the problem which is investigated ind detail in this paper is the wave resistance of a mathematical quadratic model in a uniform stream. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. The numerical results using the panel shift method and finite difference method are compared with the experimental results for wigley mono hull. There are no differences in the wave resistance. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

Numerical study of hydrodynamic interaction on a vessel in restricted waterways

  • Lee, Chun-Ki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The hydrodynamic interaction between ship and bank can't be neglected when a vessel is app- roached toward the tip of a wedge-shaped bank in restricted waterways, such as in a harbor, near some fixed obstacles, or in a narrow channel. In this paper, the characteristic features of the hydrodynamic interaction acting on a slowly moving vessel in the proximity of a wedge-shaped bank are described and illustrated, and the effects of water depth and the spacing between ship and wedge-shaped bank are summarized and discussed based on the slender body theory. From the theoretical results, it indicated that the hydrodynamic interactions decrease as wedge-shaped bank of angle ${\beta}$ in-creases. For water depth to draft ratio less than about 2.0, the hydrodynamic interactions between ship and bank in-crease sharply as h/d decreases, regardless of the wedge-shaped bank of angle ${\beta}$. Also, for lateral separation more than about 0.2L between ship and wedge-shaped bank, it can be concluded that the bank effects decrease largely as the separation increases.

A Study on the Hydrodynamic Force Acting on a Large Vessel in the Proximity of Breakwater (방파제 형상 연직구조물 부근을 항행하는 대형선박에 미치는 간섭력에 관한 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.345-350
    • /
    • 2013
  • It is well known that the hydrodynamic forces and moments induced by the proximity of bank in confined waters, such as in a harbour or narrow channel affect ship's maneuvering motion. In this paper, the calculation method based on the slender body theory for estimation of the hydrodynamic force between ship and breakwater is applied, and also, the characteristic features of hydrodynamic force acting on a large vessel in the proximity of a breakwater are described and illustrated. Furthermore, the effects of water depth and the lateral spacing between ship and breakwater are summarized and discussed.

Study on Ship Performance in a Seaway for Application to Early Stage of Hull-Form Design (선박의 파랑 중 운항성능을 고려한 초기 선형설계에 대한 연구)

  • Jung, Yoo-Won;Kim, Yonghwan;Park, Dong-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.171-186
    • /
    • 2017
  • This paper introduces a study on ship performance in waves to consider the effects of added resistance in the early stage of hull-form design. A ship experiences a loss of speed in actual seaways, hence this study proposes the overall procedure of a new design concept that takes into account the hydrodynamic performance of ship in waves. In the procedure, the added resistance is predicted using numerical methods: slender-body theory and Maruo's far-field formulation, since these methods are efficient in initial design stage, and an empirical formula is adopted for short waves. As computational models, KVLCC2 hull and Supramax bulk carrier are considered, and the results of added resistance and weather factor for test models are discussed. The computational results of vertical motion response and added resistance of KVLCC2 hull are compared with the experimental data. In addition, the sensitivity analysis of added resistance and weather factor for KVLCC2 hull to the variations of ship dimensions are conducted, and the change of the added resistance and propulsion factors after hull form variations are discussed.

On the Prediction Method of Added Resistance of Ships in Regular Head Waves (선박의 파랑중 부가저항 계산법에 관한 연구)

  • Jae-Moon,Lew;Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.14-20
    • /
    • 1986
  • Through the momentum considerations, added resistance of a ship in regular waves are studied within the framework of the linear potential theory for a ship moving with a constant mean forward speed. In this paper, added resistance in head waves with comparably small wave length is focused by modifying the Marou's method. The strength of the singularities for the Kochin function is modified by considering the diffraction potentials. Slender body theory is used to determine the diffraction potentials as Adachi did. The response of a ship motion is found by using new strip method. For the purpose of comparison with the present method, calculation was also conducted by Marou's and Gerritsma-Beukelman's method. Numerical calculations are performed for five different models, that is, series 60(Cb=0.6, 0.7, 0.8), S7-175 container ship and blunt bow model. Numerical results obtained by the present method show relatively good corelations comparing with experimental results in the region under considerations.

  • PDF

On the Added Resistance of a Ship in a Regular Head Sea (종규칙파중(縱規則波中)에서의 선박(船舶)의 부가저항(附加抵抗) 계산(計算))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.3
    • /
    • pp.17-20
    • /
    • 1983
  • There have been many investigations of predicting the added resistance of a ship in seaway since Havelock discussed this topic in 1937. Among these researches, Maruo's theoretical approach is known as the most consistent mathematical representation for added resistance of a ship in regular head sea. In his theory, the hull form of a ship is represented under the slender body approximation. But the motion responses which were used for the calculation of the added resistance have been obtained by using the strip method which is based on an approximation that the hull form may be expressed as set of two dimensional cylinder sections in longitudinal direction. Therefore two different methods for hull form representation were implicity used in Maruo's original work for the added resistance calculation. Utilizing the characteristics that hull forms are usually slender, Kan expressed the hull form as two dimensional cylinder at each station by using the Taylor series expansion for the length wise direction. Putting this idea into Maruo's original work, the added resistance can be obtained with the explicitly unique representation of the hull form. For the purpose of comparison the added resistance of a hull form(series 60, Cb=0.6) was calculated by using the motion response obtained by Shintani. The numerical result showes a good qualitative agreement with the experimental result by Sibul.

  • PDF

A Study of Hydrodynamic Forces Acting on a Ship Hull Under Lateral Low Speed Motion (저속 횡 이동하는 선박의 선체에 작용하는 유체력에 관한 연구)

  • 이윤석;김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • An accurate method of estimating ship maneuverability needs to be developed to evaluate precisely and improve the maneuverability of ships according to the water depth. In order to estimate maneuverability by a mathematical model. The hydrodynamic forces acting on a ship hull and the flow field around the ship in maneuvering motion need to be estimated. The ship speed new the berth is very low and the fluid flow around a ship hull is unsteady. So, the transient fluid motion should be considered to estimate the drag force acting on the ship hull. In the low speed and short time lateral motion, the vorticity is created by the body and grow up in the acceleration stage and the velocity induced by the vorticity affect to the body in deceleration stage. For this kind of problem, CFD is considered as a goof tool to understand the phenomena. In this paper, the 2D CFD code is used for basic consideration of the phenomena to solve the flow in the cross section of the ship considering the ship is slender and the water depth is large enough. The flow fields Added and hydrodynamic forces for the some prescribed motions are computed and compared with the preliminary experiment results. The comparison of the force with measurement is shown a fairly good agreement in tendency. The 3D Potential Calculation based on the Hess & Smith Theory is employed to predict the surge, sway added mass and yaw added moment of inertia of hydrodynamic coefficients for M/V ESSO OSAKA according to the water depth. The results are also compared with experimental data. Finally, the sway added mass of hydrodynamic coefficients for T/S HANNARA is suggested in each water depth.

  • PDF

Wave Responses and Ship Motions in a Harbor Excited by Long Waves(I) (항만내 파도응답과 계류선박의 운동해석(I))

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.38-47
    • /
    • 1992
  • The motion response of a ship moored in a rectangular harbor excited by long waves has been studied theoretically and experimentally. Within the framework of potential theory, matched asymptotic expansion techniques are exployed to analyze the problem. The fluid domain is divided into the ocean and the harbor regions for the analysis of wave response in a harbor without ship. The wave responses in both the ocean and the harbor sides are solved first independently in terms of Green's functions, which are the solutions of the Helmholtz equation satisfying appropriate boundary conditions. Slender body approximations are used to obtain the velocity jumps across the ship, which are associated with the symmetric motion modes of the ship. Unknowns contained in each solution are finally determined by matching at an intermediate zone between two neighboring regions. Theoretical results predict the ship motion qualitatively well. The main source of quantitative discrepancies is presumably due to real fluid effects such as separation at the harbor entrance and friction on harbor boundaries.

  • PDF

Numerical Prediction of Ship Induced Wave and its Propagation Using Nonlinear Dispersive Wave Model (비선형분산파랑모형을 이용한 항주파의 발생과 전파에 관한 수치예측모형 개발)

  • Shin, Seung-Ho;Jeong, Dae-Deug
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.527-537
    • /
    • 2003
  • The characteristics of ship induced waves caused by navigation become widely different from both ship's speed and water depth condition. The ship induced waves specially generated in coastwise routes frequently give rise to call unforeseen danger for swimmers and small boats as well as shoreline erosion or sea wall destruction in coastal zones. The main concern of ship induced wave study until now is either how to reduce ship resistance or how to manoeuvre the ship safely under a constant water depth in the view point of shipbuilding engineers. Moreover, due to the trends for appearance of the high speed ships at the shallow coastal water, we are confronted with the danger of damages from those ship induced waves. Therefore, it is necessary to examine the development of ship induced waves and the influence of their deformation effects according to its propagation ray. In present study, in order to predict the development of the ship induced waves and their propagation under the conditions of complicate and variable shallow water depth with varying ship's speed, we constructed a computer model using Boussinesq equation with a fixed coordinate system and verified the model results by comparison with experimental results. Additionally, the model was applied under the variable water depth based on actual passage and we then confirmed the importance of the variable water depth consideration.

Theoretical Analysis of Linear Maneuvering Coefficients with Water Depth Effect (수심의 영향을 고려한 선형(線形) 조종성 계수의 이론적 해석)

  • In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.47-58
    • /
    • 1994
  • Theoretical calculations are carried out for the estimation of linear maneuvering coefficients of a ship moving in shallow water region. Hydrodynamic forces and moments acting on a maneuvering ship are modelled based on a slender body theory, from which integro-differential equation for the unknown inner stream velocity is derived. Numerical algorithms fur solving this equation are described in detail. By considering water depth effects in the mathematical model, variations of maneuvering coefficients with water depth are studied. Programs are developed according to this method and calculations are done for Mariner, Series 60 and Wigley hull forms. For the verification of the programs, calculated results are compared with some analytic solutions and with published experimental results, which show good agreements in spite of many assumptions included in the mathematical model. It is expected that this method can be used as a preliminary tool for the estimation of maneuverability coefficients of a ship in shallow water region at its initial design stage.

  • PDF