• Title/Summary/Keyword: Slender Bar

Search Result 22, Processing Time 0.022 seconds

Implications of yield penetration on confinement requirements of r.c. wall elements

  • Tastani, Souzana P.;Pantazopoulou, Stavroula J.
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.831-849
    • /
    • 2015
  • Seismic-design procedures for walls require that the confinement in the critical (plastic hinge) regions should extend over a length in the compression zone of the cross section at the wall base where concrete strains in the Ultimate Limit State (ULS) exceed the limit of 0.0035. In a performance-based framework, confinement is linked to required curvature ductility so that the drift demand at the performance point of the structure for the design earthquake may be met. However, performance of flexural walls in the recent earthquakes in Chile (2010) and Christchurch (2011) indicates that the actual compression strains in the critical regions of many structural walls were higher than estimated, being responsible for several of the reported failures by toe crushing. In this study, the method of estimating the confined region and magnitude of compression strain demands in slender walls are revisited. The objective is to account for a newly identified kinematic interaction between the normal strains that arise in the compression zone, and the lumped rotations that occur at the other end of the wall base due to penetration of bar tension yielding into the supporting anchorage. Design charts estimating the amount of yield penetration in terms of the resulting lumped rotation at the wall base are used to quantify the increased demands for compression strain in the critical section. The estimated strain increase may exceed by more than 30% the base value estimated from the existing design expressions, which explains the frequently reported occurrence of toe crushing even in well confined slender walls under high drift demands. Example cases are included in the presentation to illustrate the behavioral parametric trends and implications in seismic design of walls.

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

Load carrying capacity of deteriorated reinforced concrete columns

  • Tapan, Mucip;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.473-490
    • /
    • 2009
  • This paper presents a new methodology to evaluate the load carrying capacity of deteriorated non-slender concrete bridge pier columns by construction of the full P-M interaction diagrams. The proposed method incorporates the actual material properties of deteriorated columns, and accounts for amount of corrosion and exposed corroded bar length, concrete loss, loss of concrete confinement and strength due to stirrup deterioration, bond failure, and type of stresses in the corroded reinforcement. The developed structural model and the damaged material models are integrated in a spreadsheet for evaluating the load carrying capacity for different deterioration stages and/or corrosion amounts. Available experimental and analytical data for the effects of corrosion on short columns subject to axial loads combined with moments (eccentricity induced) are used to verify the accuracy of proposed model. It was observed that, for the limited available experimental data, the proposed model is conservative and is capable of predicting the load carrying capacity of deteriorated reinforced concrete columns with reasonable accuracy. The proposed analytical method will improve the understanding of effects of deterioration on structural members, and allow engineers to qualitatively assess load carrying capacity of deteriorated reinforced concrete bridge pier columns.

Hybrid nonlinear control of a tall tower with a pendulum absorber

  • Orlando, Diego;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.153-177
    • /
    • 2013
  • Pendulums can be used as passive vibration control devices in several structures and machines. In the present work, the nonlinear behavior of a pendulum-tower system is studied. The tower is modeled as a bar with variable cross-section with concentrated masses. First, the vibration modes and frequencies of the tower are obtained analytically. The primary structure and absorber together constitute a coupled system which is discretized as a two degrees of freedom nonlinear system, using the normalized eigenfunctions and the Rayleigh-Ritz method. The analysis shows the influence of the geometric nonlinearity of the pendulum absorber on the response of the tower. A parametric analysis also shows that, with an appropriate choice of the absorber parameters, a pendulum can decrease the vibration amplitudes of the tower in the main resonance region. The results also show that the pendulum nonlinearity cannot be neglected in this type of problem, leading to multiplicity of solutions, dynamic jumps and instability. In order to improve the effectiveness of the control during the transient response, a hybrid control system is suggested. The added control force is implemented as a non-linear variable stiffness device based on position and velocity feedback. The obtained results show that this strategy of nonlinear control is attractive, has a good potential and can be used to minimize the response of slender structures under various types of excitation.

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

The Influence of Two Phase Flow on Fretting Wear between Steam Generator Tube and Supporting Bar (이상 유동 환경이 증기 발생기 세관과 지지대의 프레팅 마모에 미치는 영향에 대한 연구)

  • Lee, Young-Ze;Park, Jung-Min;Jeong, Sung-Hoon;Kim, Jin-Seon;Park, Se-Min
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.362-367
    • /
    • 2008
  • Tubes in nuclear steam generators are held up by supports because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube-support. The fretting wear of tube-support can threaten the safety of nuclear power plant. The tube and support materials were Inconel 690 and STS 409. The wear tests were conducted in various environments, which are in water without flow, in flowing water and in flowing water with air. The results showed that the flow of water influenced on the wear-life of tube. The wear-life of tube decreased in water flow as compared with wear-life in stationary water.

Experimental and numerical study of headed bars embedded in RC members under tension

  • Santana, Paulo F.M.;Silva, Patricia C.S.;Ferreira, Mauricio P.;Bezerra, Luciano M.;Oliveira, Marcos H.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.531-546
    • /
    • 2022
  • Headed bars are often used when there is insufficient space for a straight or curved bar to be fully developed to ensure the transference of forces between steel and concrete in several types of connections between structural members. In such cases, the concrete breakout strength of the headed bars can be a critical point of the design and must be considered appropriately. This paper evaluates the tensile strength of headed bars embedded in reinforced concrete members, failing due to concrete breakout. Four experimental tests on headed bars embedded in slender concrete members are presented and discussed, showing that strength previsions from the design codes can be significantly conservative as they ignore the contribution from the flexural reinforcement. 3D finite element models were developed using Abaqus Unified FEA to simulate the tested specimens, and it was observed that they were able to reproduce the formation of the concrete cone accurately, besides the response and resistance observed in tests. Furthermore, the experimental, numerical, and design code resistances are compared and discussed. A new equation to evaluate the concrete cone strength of the tested headed bars is proposed, which takes into account parameters not explicitly considered in the current design equations.

Shear Behavior of Slender HSC Beams Reinforced with Stirrups using Headed Bars, High Strength Steels, and CFRP Bars (헤디드 바, 고장력 철근 및 CFRP 바로 전단보강된 세장 고강도콘크리트 보의 전단 거동 평가)

  • Yang, Jun-Mo;Kwon, Ki-Yeon;Choi, Hong-Shik;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2007
  • If conventional reinforcements are used for high-strength concrete (HSC) structures, a large amount of the reinforcement must be required to compensate for the brittleness of HSC and make the best use of HSC. This raises some structural problems such as steel congestion and an increase in self-weight. Therefore, alternative reinforcing materials and methods for HSC structures are needed. In this study, four full-scale beam specimens constructed with HSC (100 MPa) were tested to investigate the effect of the different shear reinforcements on the shear behavior. These four specimens were reinforced for shear stirrups with normal and high strength steels, headed bars, and carbon fiber-reinforced polymer (CFRP) bars, respectively. In addition, steel fibers were added to the HSC in the two of the specimens to observe their beneficial effects. The use of high strength steels resulted in the improvement of the shear capacity since the shear resistance provided by the shear reinforcements and the bond strength were increased. The specimen reinforced with headed bars also showed a superior performance to the conventional steel reinforced specimen due to the considerably high anchorage strength of headed bar. CFRP bars used in this research, however, seemed to be inadequate for shear reinforcement because of the inferior bond capacity. The presence of the steel fibers in concrete led to remarkable improvement in the ductility of the specimens as well as in the overall cracks control capability.

Macro Model for Nonlinear Analysis of Reinforced Concrete Walls (철근콘크리트 벽체의 비선형 해석을 위한 거시 모델)

  • Kim, Dong-Kwan;Eom, Tae-Sung;Lim, Young-Joo;Lee, Han-Seon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.569-579
    • /
    • 2011
  • Reinforced concrete walls subjected to cyclic loading show complicated inelastic behaviors varying with aspect ratio, re-bar detail, and loading condition. In the present study, a macro model for nonlinear analysis of reinforced concrete walls was developed. For exact prediction of inelastic flexure-compression and shear behaviors, the macro model of the wall was idealized with longitudinal and diagonal uniaxial elements. The uniaxial elements consist of concrete and re-bars. Simplified cyclic models for concrete and re-bars under uniaxial loading was used. For verification, the proposed model was applied to slender, lowrise, and coupled walls subjected to cyclic loading. The results showed that the proposed method predicted the nonlinear behaviors of the walls with reasonable precision.