• Title/Summary/Keyword: Sleeve welding

Search Result 30, Processing Time 0.029 seconds

Development of Friction Welded Al to Cn Bimetallic Sleeve for 220kV XLPE Cable Termination & Joint (220kV XLPE CABLE 접속함용 Al-Cu 이종접속슬리브 개발)

  • Kim, Hyun-Ju;Park, Jeong-Ki;Park, Sung-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.93-93
    • /
    • 2010
  • We developed friction welded bimetallic sleeve for 220kV aluminum conductor XLPE cable. Not only friction welded bimetallic sleeve for Termination(EB-A, EB-G) but also friction welded sleeve for Joint of Al to Cu conductor was developed regardless of this project. Generally, friction welded sleeve used to connect Al conductor cable to Cu conductor cable and used for improvement of mechanical property of terminal by offer the copper side of friction welded bimetallic sleeve at the Termination. Connection method for Al-Cu conductor has mainly used friction welding at the solid state, because it is difficult to connect by using conventional welding method. this investigation introduces development of friction welded bimetallic sleeve by friction welding and test result of 220kV Al conductor XLPE cable and accessories using friction welded sleeve.

  • PDF

The Effects of Heat Input and Gas Flow Rate on Weld Integrity for Sleeve Repair Welding of In-Service Gas Pipelines

  • Kim, Y.P.;Kim, W.S.;Bang, I.W.;Oh, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.36-41
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMAW and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The finite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

Welding of Inconel Tube with Pulsed Nd:YAG Laser (펄스형 Nd:YAG 레이저 빔에 의한 Inconel Tube의 용접)

  • Kim, J.D.;Chang, W.;Chung, J.M.;Kim, C.J.
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.82-87
    • /
    • 1999
  • The basic remote sleeve repair-welding technology by the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in a nuclear power plant has been developed. The relationship between the connection width and welding parameters have been investigated for the fundamental research to apply the sleeve-repair-welding technique to the nuclear industry. The Inconel 600 tube and Inconel 690 sleeve used for high temperature and high pressure service were welded as round lap welding by Nd:YAG laser. It was observed that the tensile shear strength, 340MPa of the welded specimen is equivalent to about 60% of that of the base metal (Inconel 600), 550MPa. The difference between the hardness of the base metal and that of the laser welds was about 10%. Ductile fracture was partly occurred in the weld but the cracking has not been observed. In spite of absence of the crack, the strength of welds was not sufficient in terms of the tensile shear strength.

  • PDF

THE EFFECTS OF HEAT INPUT AND GAS FLOW RATE ON WELD INTEGRITY FOR SLEEVE REPAIR WELDING OF IN-SERVICE GAS PIPELINES

  • Kim, Young-pyo;Kim, Woo-sik;Bani, In-wan;Oh, Kyu-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.390-395
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMA W and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The [mite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

A Study on Temperature Profile and Residual Stress in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 온도분포와 잔류응력에 관한 연구)

  • 김영표;김형식;김우식;홍성호;방인완;오규환
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.95-105
    • /
    • 1996
  • Korea Gas Corporation has operated high pressure gas transmission line of about 600 kilometers and, therefore, a series of repair welding processes are required in order to cope with external defects such as dent, gouge, cracking usually due to mechanical attacks. Most of gas pipelines repair processes are performed after completely venting remaining gas. However, in some case, though it is very unusual, repairs require without venting gas. For instance, this case is that damaged pipeline is remedied with split sleeve by welding. In this paper, in an effort to confirm a safe application of the split sleeve welding, residual stress, strain and temperature distributions are evaluated by computer simulation and experiments. The results obtained are as follows : 1) Computer modelling is supposed to be reasonable because microstructure changes due to welding is simulated coincidently as compare to that of real condition. 2) The maximal temperature on inside surface of pipeline is 50$0^{\circ}C$ for the repair welding process. 3) The amount of residual stress is estimated as the stress corresponding to 0.8% strain. 4) The repair process employed is determined to be technically preferable because of its avoiding cracks and fractures in the course of welding.

  • PDF

A Study on Mechanical Properties of Fillet Weldment in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 필릿용접부의 기계적특성에 관한 연구)

  • 김영표;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.49-58
    • /
    • 1996
  • In Korea Gas Corporation, as one of the pipeline repairing methods, damaged pipelines are sometimes treated with a temporally employment of split sleeve. On conducting the repair process, circumferential fillet and longitudinal groove welding usually must be included. For the case of groove welding, a considerable amount of R&D have been carried out related to property changes, while few study on the property change in fillet welding has been conducted. In this paper, so as to confirm the specification of fillet welding in terms of safety and reliability, properties changed by fillet welding were investigated for two welding processes. Qualifying tests such as reviewing macrostructure and nick-break tests were performed according to API 1104 and ASME section IX. In addition, tensile properties and hardness were evaluated according to KS B0841 and BS 4515. The fillet weld prepared by the qualified procedure showed melting depth of 0.8∼1.3mm and heat affected zone of 2.8∼3.4mm length. No crack and lack of penetration were observed. And the results of hardness and nick-break tests satisfied code requirements. The area crossed by fillet and groove welding line was found to have minimal tensile strength.

  • PDF

A Study on optimization of welding process parameters for J-Groove dissimilar metal weld repair of pressurizer heater sleeve in nuclear power plants (원전 가압기 히터슬리브 J-Groove 이종금속 용접부 보수를 위한 용접 공정변수 최적화에 관한 연구)

  • Cho, Hong Seok;Park, Ik Keun;Jung, Kwang Woon
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.87-93
    • /
    • 2015
  • This study was performed to develop repair technology for J-Groove dissimilar metal weld of pressurizer heater sleeve in nuclear power plants. Pad, J-Groove automatic welding and mechanical machining equipments to develop repair technology using 'Half Nozzle Repair' were designed and manufactured. To obtain the optimum welding process parameters during Pad temperbead overlay welding, several welding experiments using Taguchi method were conducted. Weldability of Pad overlay weld specimens was estimated by PT/RT test, FE-SEM, EDS and Vickers hardness test. Also, J-Groove welding to adjust weld shape conditions requiring in ASME Code was carried out and its integrity of weld specimens was evaluated through PT/RT test and optical microscope. Consequently, it was revealed that Pad and J-Groove overlay welding for dissimilar metal weld of pressurizer heater sleeve could be possible to meet Code standard without weld defect.

Shear Strength of lnconel Tube Welded with Pulsed Nd:YAG Laser (펄스형 Nd:YAG레이저로 용접된 Inconel Tube의 전단강도)

  • Chang, W.;Kim, J. D.;Chung, J. M.;Kim, C. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.125-128
    • /
    • 1995
  • The remote sleeve repair-welding technology using the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in the nuclear power plant has been developed. The laser welding has many advantages on deep penetration depth and narrow heat affect zone(HAZ). The inconel 600 tube and inconel 690 sleeve used high temperature and high pressure service have been welded as round lap welds. It is found that the relation between the connection width and welding parameters. It is found that the shear strength in proportion to the connection width by conducting tensile-shear tests.

  • PDF

Welding Characteristics of Inconel Plate Using Pulsed Nd : YAG Laser Beam (펄스형 Nd:YAG 레이저빔을 이용한 인코넬 판재의 용접 특성)

  • 변진귀;박광수;한원진;심상한
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • The nuclear steam generators are subjected to corrosion environmental condition during operation that can result in stress corrosion in the tube wall. If any tube wall degradation is recognized, the tube must be repaired by plugging or sleeving. For the sleeving repair, Nd : YAG laser welded sleeving technology is one of the most promising when considering radioactive working conditions in the nuclear power plant. In this paper, the laser welding characteristics of steam generator tube and sleeve materials are investigated. The effects of average laser power, laser energy, welding speed, pulse duration and frequency are evaluated. Based on these results, Nd : YAG laser welded sleeving repair was applied to the degraded steam generator tubes in real environment.

  • PDF