• Title/Summary/Keyword: Sleep State Detection Algorithm

Search Result 3, Processing Time 0.021 seconds

A Study on the Detecting of Noncontact Biosignal using UWB Radar (UWB 레이더를 이용한 비접촉 생체신호 검출에 관한 연구)

  • Lee, Yonggyu;Cho, Joonggil;Kim, Taesung
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.1-6
    • /
    • 2019
  • This study relates to acquiring biological signal without attaching directly to the user using UWB(Ultra Wide Band) radar. The collected information is the respiratory rate, heart rate, and the degree of movement during sleep, and this information is used to measure the sleep state. A breathing measurement algorithm and a sleep state detection algorithm were developed to graph the measured data. Information about the sleep state will be used as a personalized diagnosis by connecting with the medical institution and contribute to the prevention of sleep related diseases. In addition, biological signal will be linked to various sensors in the era of the 4th industrial revolution, leading to smart healthcare, which will make human life more enriching.

Sleep Deprivation Attack Detection Based on Clustering in Wireless Sensor Network (무선 센서 네트워크에서 클러스터링 기반 Sleep Deprivation Attack 탐지 모델)

  • Kim, Suk-young;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • Wireless sensors that make up the Wireless Sensor Network generally have extremely limited power and resources. The wireless sensor enters the sleep state at a certain interval to conserve power. The Sleep deflation attack is a deadly attack that consumes power by preventing wireless sensors from entering the sleep state, but there is no clear countermeasure. Thus, in this paper, using clustering-based binary search tree structure, the Sleep deprivation attack detection model is proposed. The model proposed in this paper utilizes one of the characteristics of both attack sensor nodes and normal sensor nodes which were classified using machine learning. The characteristics used for detection were determined using Long Short-Term Memory, Decision Tree, Support Vector Machine, and K-Nearest Neighbor. Thresholds for judging attack sensor nodes were then learned by applying the SVM. The determined features were used in the proposed algorithm to calculate the values for attack detection, and the threshold for determining the calculated values was derived by applying SVM.Through experiments, the detection model proposed showed a detection rate of 94% when 35% of the total sensor nodes were attack sensor nodes and improvement of up to 26% in power retention.

Drowsiness Detection using Eye-blink Patterns (눈 깜박임 패턴을 이용한 졸음 검출)

  • Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2011
  • In this paper, a novel drowsiness detection algorithm using eye-blink pattern is proposed. The proposed drowsiness detection model using finite automata makes it easy to detect eye-blink, drowsiness and sleep by checking the number of input symbols standing for closed eye state only. Also it increases the accuracy by taking vertical projection histogram after locating the eye region using the feature of horizontal projection histogram, and minimizes the external effects such as eyebrows or black-framed glasses. Experimental results in eye-blinks detection using the JZU eye-blink database show that our approach achieves more than 93% precision and high performance.