In this study, ECG was recorded during sleep patients with obstructive sleep apnea. We detecte(heart rate variability) signal from the ECG wa QRS detection algorithm. And we observed HRV by the power spectrum density using autoregr modeling. The experimental results were analysis sleep stage 1, sleep stage 2, sleep stage 3, sleep s sleep stage REM. In experimental result, the PSD with obstructive sleep apnea patients was distributed low frequency band except sleep step 4. These effect means that the sympathetic nervous system affected the sleep stage 1, 2, REM and the parasympathetic nervous system affected the sleep stage 3, 4 with obstructive sleep apnea patients.
수면단계는 수면감을 평가하는 데 있어서 중요한 생리지표로서 사용되어 왔다. 그러나 수면다원검사를 이용한 전통적 수면단계 분류방법은 뇌전도(electroencephalogram : EEG), 안전도(electrooculogram : EOG), 심전도(electrocardiogram : ECG), 근전도(electromyogram : EMG) 등을 종합적으로 측정하므로 수면단계를 비교적 정확히 분류할 수 있지만 피험자에게 심한 구속감을 주는 문제가 있다. 본 연구에서는, 각성상태에서 교감신경계가 지배적인 반면에 수면 중에는 부교감 신경계가 더 활동적인 점에 착안하여 수면단계를 간단히 분류할 수 있는 방법을 찾고자 수면단계에 따른 심박동변이도(heart rate variability : HRY)를 분석하였다. 이 실험에는 건강한 대학생 6명이 2일씩 전체 12회의 야간수면에 참여하였다. 수면다원검사 장치를 이용하여 피험자들이 수면을 취하고 있는 동안, EEG, EOG, ECG, EMG(턱 및 다리)를 측정하여 수면단계를 "Standard scoring system for sleep stage"에 따라 자동으로 분류하였다. 그런 뒤, 본 연구를 통하여 제작된 Sleep Data Acquisition/Analysis 시스템을 이용하여 수면다원검사 장치로부터 ECG신호만 추출하여 HRV의 전력스펙트럼을 3개의 영역[저주파수대역(low frequency : LF), 중간주파수대역(medium frequency : MF), 고주파수대역(high frequency : HF)]으로 나누어 분석하였다. 단일채널 ECG를 이용하여 수면단계별로 HRV의 LF/HF를 분석한 결과, W(wakefulness)단계가 2단계에 비하여 325%높게(p<.05), 3단계에 비하여 628%높게(p<.001), 4단계에 비하여 800%높게(p<.001) 나타났으며, 4단계는 REM(rapid eye movement)단계에 비하여 427% 낮게(p<.05), 1단계에 비하여 418% 낮게(p<.05) 나타났다. 또한 LF/HF가 수면단계에 따라 변화하는 양상은 W, REM, 1, 2, 3, 4단계의 순으로 단조 감소하였다. 한편, 수면단계별 MF/(LF+HF)의 차이는 유의하지 않았으나 표본집단의 기술통계치를 살펴본 바 REM단계와 3단계의 평균치가 가장 높았다.치가 가장 높았다.
In this paper, we designed a multimodal bio-signal measurement system to observe changes in the brain nervous system and vascular system during sleep. Changes in the nervous system and the cerebral blood flow system in the brain during sleep induce a unique correlation between the changes in the nervous system and the blood flow system. Therefore, it is necessary to simultaneously observe changes in the brain nervous system and changes in the blood flow system to observe the sleep state. To measure the change of the nervous system, EEG, EOG and EMG signal used for the sleep stage analysis were designed. We designed a system for measuring cerebral blood flow changes using functional near-infrared spectroscopy. Among the various imaging methods to measure blood flow and metabolism, it is easy to measure simultaneously with EEG signal and it can be easily designed for miniaturization of equipment. The sleep stage was analyzed by the measured data, and the change of the cerebral blood flow was confirmed by the change of the sleep stage.
Recently, as the sleep disorder problem of modern people deepens, the interest towards quality of sleep is increasing. To increase the quality of modern people's sleep. This paper has suggested an LED lighting control system according to the sleep stage using PPG sensors of wearable devices. The pulse of the wrist radial artery was measured using a wearable device mounted with PPG sensor, which enables heart rate-measuring, and by using the point that heart rate lowers during stable sleep than non-sleeping, the LED lighting of indoors was controlled, which is the disturbing element when sleeping. For the performance evaluation, a 10-Fold cross analysis was conducted for performance evaluation, and a result of an average accuracy 87.02% was obtained as a result. Therefore, the LED lighting control system according to the sleep stage using a wearable device of this paper is expected to contribute to raise the quality of the user's life.
본 논문은 수면 2기의 EEG 신호와 주성분 분석(principle component analysis)을 이용하여 수면 장애를 분류하는 방안을 제안하고 있다. 초기 특징을 추출하기 위해서 첫 번째 단계에서는 수면 2기의 EEG 신호가 고속 푸리에 변환(fast Fourier transforms)에 의해서 잡음을 제거하는 과정이 수행되었다. 잡음이 제거된 EEG 신호를 두 번째 단계에서는 주성분 분석을 이용하여 5개의 차원으로 축소하였다. 마지막 단계에서는 축소된 5개의 차원을 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions, NEWFM)의 입력으로 사용하여 분류성능을 측정하였다. 분류성능에 있어서 정확도(accuracy), 특이도(specificity), 민감도(sensitivity)가 모두 100%로 나타났다.
다양한 수면검사에서 수면단계를 정확히 판단하기 위해 뇌파를 측정한다. 일반적으로 측정은 센서 채널의 개수가 늘어날수록 정확도가 높아지지만, 뇌파는 측정할 때 피부에 전극을 부착하여 수면을 방해하는 요소로 작용한다. 일상생활에서 자가 수면케어를 할 때는 사용자의 불편함과 측정데이터의 정확도를 모두 고려한 최소한의 뇌파 채널 개수를 선택할 필요가 있다. 따라서 본 논문에서는 1개의 채널부터 4개의 채널에 대한 수면단계 분석 모델을 제작하여 1채널은 82.28%, 2채널은 85.77%, 3채널은 80.33%, 4채널은 68.87%의 정확도를 확인했다. 본 연구 결과는 측정 부위가 제한적이라는 한계가 있지만, 채널 개수에 따른 정확도를 비교하여 뇌파 기반 수면분석에서 채널 개수 선정에 대한 정보를 제공한다.
본 연구의 목적은 수면상태 분석을 위한 분류기를 설계해줌과 동시에 생체신호를 기반으로 하여 수면상태 판별에 유효한 주요 특징벡터들을 추출함에 있다. 수면은 인간의 삶에 중요한 영향을 끼친다. 따라서 사람들이 수면부족 혹은 수면장애를 겪게 되면 집중력 감퇴, 인지기능 장애 등의 문제를 가질 우려가 생기게 되므로, 수면단계 판별에 관한 많은 연구들이 이루어지고 있다. 본 연구에서는 피험자가 수면을 취하는 동안 피험자의 생체신호를 획득하였다. 획득 된 생체신호로부터 필터링 등의 전처리 과정을 통하여 특징들을 추출하여 주었다. 추출된 특징들은 유전 알고리즘과 신경망을 결합하여 만든 새로운 알고리즘의 입력으로 사용되었으며, 알고리즘은 수면단계 분석을 위하여 높은 가중치를 가지는 특징을 선택하여 주었다. 이에 따른 결과로 뇌파 신호와 심전도 신호 모두 사용 시 알고리즘의 정확도는 약 90.26%가 나왔으며, 선택되어진 특징은 뇌파 신호의 ${\alpha}$파와 ${\delta}$파의 주파수 파워와 심전도 신호의 SDNN(Standard deviation of all normal RR intervals)이다. 선택된 특징은 수면상태를 분류하는데 중요한 역할을 함을 알고리즘을 반복적으로 수행하여 확인하였고, 이 연구는 추후 수면장애의 진단 혹은 수면분석의 지침을 만드는데 사용가능할 것으로 사료된다.
목 적:1단계 수면은, 입면 시점과 관련하여 수면다원기록의 해석에 중요한 정보를 제공한다. 1단계 수면은 각성 상태에서 수면 상태로의 짧은 전이 기간으로, 특징적인 지표가 없어 디지털 분석을 통한 수면 단계 결정에 어려움이 있다. 본 연구에서는, 뇌파와 안전도에 대한 디지털 분석을 통하여 1단계 수면을 자동으로 탐지하는 프로그램을 개발하고자 하였다. 방 법:야간수면다원기록 중 검사 시작 시점부터 2단계 수면이 출현하기 이전의 자료를 분석하였다. 뇌파의 스펙트럼 분석을 통해 알파파와 세타파의 상대 파워를 계산하였고, 알파파의 상대 파워가 50% 이하, 세타파의 상대 파워가 23% 이상일 경우 1단계 수면 판정의 기준 변수로 하였다. 또 안구운동의 지속시간이 1.5초에서 4초 사이에 있는 경우에 느린 안구운동(SEM)으로 판정하고 1단계 수면 판정의 기준변수로 하였다. 이 들 세 기준 변수들을 고려하여 해당 판독단위에 대해 각성 혹은 1단계 수면으로 최종 판정하였다. 결 과:연구 대상자는 7명으로 모두 남성이었으며, 23세였다. 개발된 프로그램을 이용하여 169개의 판독단위를 분석하였다. 기준과의 일치도는 79.3%였으며, 카파값은 0.586이고, 통계적으로 유의하였다. 느린 안구운동은 169개의 판독단위 중 54개(32%)에서 나타났으며, 70.4%의 일치도를 보였다. 결 론:기존 연구의 디지털 분석을 통한 수면 단계 판정의 일치도는 70%이다. 본 프로그램의 일치도 79.3%는 기존 연구 결과에 비해 향상된 것이며, 본 프로그램이 1단계 수면 판정에 유용하다고 판단된다. 뇌파 외에 안전도를 고려한 다중적 접근이 일치도 향상에 기여했을 것으로 생각되며, 1단계 수면 판정에 있어 안전도의 중요성을 확인할 수 있었다.
목 적:뇌파의 비선형적 특성을 연구하는 방법으로 탈경향 변동분석이 사용되고 있다. 본 연구에서는 정상인 수면 뇌파에 탈경향변동분석을 적용하여 수면뇌파의 비선형적 특성, 채널 별 차이, 수면단계별 차이를 규명하고자 하였다. 방 법:정상인 12명($23.8{\pm}2.5$세, 남:여=7:5)를 대상으로 야간수면다원검사를 시행하였다. 수면다원검사를 통해 얻어진 뇌파를 채널 별, 수면단계별로 나누어 탈경향변동분석 시행 후 여기서 얻어진 축척지수(scaling exponent)를 선형혼합모형 분석을 통해 비교하였다. 결 과:정상인 수면다원검사에서 얻어진 뇌파의 축척지수는 1 내외의 값을 보여 장기-시간적연관성, 자기유사성을 보였다. C3 채널의 축적지수가 O1채널의 축적지수보다 높은 값을 보였다. 수면단계가 진행함에 따라 축적지수는 증가하였으며, 1단계 수면과 렘수면은 축적지수는 통계적 차이를 보이지 않았다. 결 론:정상인 수면 뇌파는 탈경향변동분석에서 무축척요동(scale-free fluctuation), 장기-시간적 관련성(long-range temporal correlation), 자기유사성(self-similarity) 및 스스로 짜여진 고비성(self-organized criticality) 등의 비선형적 특성을 보였다. 탈경향변동분석에서 얻어진 축적지수는 뇌파 채널 별, 수면단계별 차이를 보여 수면 뇌파를 연구하는 중요한 도구로 사용될 수 있다.
Insufficient sleep time and bad sleep quality causes many illnesses and it's research became more and more important. The most common method for measuring sleep quality is the polysomnography(PSG). The PSG is a test used to diagnose sleep disorders. The most common PSG data is obtained from the examiner, which attaches several sensors on a body and takes sleep overnight. However, most of the sleep stage classification in PSG are low accuracy of the classification. In this paper, we have studied algorithm for sleep level classification based on machine learning which can replace PSG. EEG, EOG, and EMG channel signals are studied and tested by using CNN algorithm. In order to compensate the performance, a mixed model using both CNN and DNN models is designed and tested for performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.