• Title/Summary/Keyword: Slanted surface machining

Search Result 4, Processing Time 0.017 seconds

Mean Cutting Force Prediction in Ball-End Milling of Slanted Surface Using Force Map (볼엔드밀 경사면 가공에서 절삭력 맵을 이용한 평균절삭력 예측)

  • 김규만;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.212-219
    • /
    • 1998
  • During machining of dies and molds with sculptured surfaces. the cutter contact area changes continuously and results in cutting force variation. In order to implement cutting force prediction model into a CAM system, an effective and fast method is necessary. In this paper. a new method is proposed to predict mean cutting force. The cutter contact area in the spherical part of the cutter is obtained using Z-map, and expressed by the grids on the cutter plane orthogonal to the cutter axis. New empirical cutting parameters were defined to describe the cutting force in the spherical part of cutter. Before the mean cutting force calculation, the cutting force density in each grid is calculated and saved to force map on the cutter plane. The mean cutting force in an arbitrary cutter contact area can be easily calculated by summing up the cutting force density of the engaged grid of the force map. The proposed method was verifed through the slotting and slanted surface machining with various inclination angles. It was shown that the mean force can be calculated fast and effectively through the proposed method for any geometry including sculptured surfaces with cusp marks and holes.

  • PDF

Cutting Force Prediction of Slanted Surface Ball-End Milling Using Cutter Contact Area (절삭영역 해석을 통한 경사면 가공에서의 볼엔드밀 절삭력 예측)

  • 김규만;조필주;황인길;주종남
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • Cutting forces in ball-end milling of slanted surfaces are calculated. The cutting area is determined from the Z-map of the surface geometry and current cutter location. The obtained cutting area is projected onto the cutter plane normal to the Z-axis and compared with cutting edge element location. Cutting force is calculated by integration of elemental cutting forces of engaged cutting edge elements. Experiments with various slanted angles were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and surfaces with pockets and holes.

  • PDF

Computational Study of Impingement Characteristics of Assist Gas from Coaxial/Off-axis Nozzles in Laser Machining (레이저 가공에서 동축/탈축 보조가스의 충돌특성에 관한 수치해석적 연구)

  • Yoon, Shi-Kyung;Sung, Hong-Gye;Lee, Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.14-19
    • /
    • 2010
  • A computational study was carried out to analyze the characteristics of supersonic (Mach 2.0) coaxial/off-axis jet's impingements on a slanted kerf surface in laser machining. The effects of various parameters such as gas pressure, distance between nozzle exit and kerf edge surface, and application of off-axis nozzles on the impingement phenomena of the assist-gas on kerf surface were observed. The present study showed that simply increasing the assist-gas pressure for coaxial supersonic nozzle was not effective to alleviate the strength of flow separation on kerf surface. It also presented the optimized operating condition of the coaxial nozzle to have the highest skin friction values over kerf surface.

Study of Characteristics of Assist Gas in Laser Machining Using Flow Visualization Techniques (유동가시화 기법을 이용한 레이저가공의 보조가스 충돌특성에 관한 연구)

  • Son, Sang-Hyuk;Lee, Yeol;Min, Seong-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • The characteristics of supersonic coaxial/off-axis jet impingements on a slanted kerf surface were experimentally studied, to investigate the role of the assist gas that removes molten materials from cut zone formed by laser machining. In this parametric study, hundreds of high-resolution schlieren images were obtained for various gas pressures, distances between nozzle exit and kerf surface, kerf widths, and alignments of off-axis nozzle. It was noticed that simply increasing the assist gas pressure was not effective in eliminating the flow separation that occurs downstream of the kerf surface. However, it was also observed that by increasing the kerf width and utilizing off-axis nozzles, the separation of the assist gas on the kerf surface can be weakened. The effect of the distance between the nozzle exit and the kerf surface on the characteristics of separation occurring on the kerf surface was found to be lower in the case of supersonic nozzles than that in the case of sonic nozzles.