• Title/Summary/Keyword: Slamming phenomena

Search Result 13, Processing Time 0.022 seconds

Experimental investigation of slamming impact acted on flat bottom bodies and cumulative damage

  • Shin, Hyunkyoung;Seo, Byoungcheon;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.294-306
    • /
    • 2018
  • Most offshore structures including offshore wind turbines, ships, etc. suffer from the impulsive pressure loads due to slamming phenomena in rough waves. The effects of elasticity & plasticity on such slamming loads are investigated through wet free drop test results of several steel unstiffened flat bottom bodies in the rectangular water tank. Also, their cumulative deformations by consecutively repetitive free drops from 1000 mm to 2000 mm in height are measured.

Numerical Simulation of Slamming Phenomena for 2-D Wedges (2차원 쐐기형 구조물의 슬래밍 현상에 대한 수치 유동해석)

  • Yum, Deuk-Joon;Yoon, Bum-Sang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.477-486
    • /
    • 2008
  • Numerical analysis for slamming impact phenomena has been carried out when 2-dimensional wedge shaped structure with finite deadrise angles enter the free surface by using a commertial CFD code, FLUENT. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct scheme (or PLIC-VOF scheme) is used for the tracking of the deforming free surface. User defined function of 6 degrees of freedom motion and moving dynamic mesh option are used for the expression of the downward motion of the structure and deforming of unstructured meshes adjacent to the structure. The magnitude and the location of impact pressure and the total drag force which is the summation of pressures distributed at the bottom of the structure are analyzed. Results of the analysis show good agreement with the results of similarity solution, asymptotic solution and the solution of BEM.

Experimental study on the asymmetric impact loads and hydroelastic responses of a very large container ship

  • Lin, Yuan;Ma, Ning;Gu, Xiechong;Wang, Deyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.226-240
    • /
    • 2020
  • This paper presents an experimental investigation of asymmetric impact effects on hydroelastic responses. A 1:64 scaled segmented ship model with U-shape open cross-section backbone was newly designed to meet elastic similarity conditions of vertical, horizontal and torsional stiffness simultaneously. Different wave heading angles and wavelengths were adopted in regular wave test. In head wave condition, parametric rolling phenomena happened along with asymmetric slamming forces, the relationship between them was disclosed at first time. The impact forces on starboard and port sides showed alternating asymmetric periodic changes. In oblique wave condition, nonlinear springing and whipping responses were found. Since slamming phenomena occurred, high-frequency bending moments became an important part in total bending moments and whipping responses were found in small wavelength. The wavelength and head angle are varied to elucidate the relationship of springing/whipping loads and asymmetric impact. The distributions of peaks of horizontal and torsional loads show highly asymmetric property.

A Study on the Reversal Flow Time due to Blackout (펌프장 정전시 역류발생시간에 관한 연구)

  • Park, Jong-Ho;Park, Han-Yung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.26-34
    • /
    • 2011
  • Waterhammer and slamming phenomena can occur when power is cut off due to reversal flow in pipeline and sudden close of check valve. Therefore analysis of reversal flow time, which means the time of reversal flow in pipeline due to pumping station blackout, is needed to protect facilities from waterhammer economically and efficiently. However systematic study on reversal flow time has not been done yet. So theory of reversal flow time analysis is proposed and verified with experiment using several parameters like pump specific speed, motor pole number, and characteristic curve of pipeline in this study.

Operation of ULCS - real life

  • Prpic-Orsic, Jasna;Parunov, Josko;Sikic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1014-1023
    • /
    • 2014
  • In this paper the real life operation of ULCS (Ultra Large Container Ships) is presented from the point of view of shipmasters. The paper provides interpretation of results of questionnaire filled by masters of large container ships during Tools for Ultra Large Container Ships (TULC) EUI FP7 project. This is done in a way that results of questionnaire are further reviewed and commented by experienced master of ULCS. Following phenomena are subject of questionnaire and further discussed in the paper: parametric rolling, slamming, whipping, springing, green water and rogue waves. Special attention is given to the definition of rough sea states as well as to measures that ship masters take to avoid them as well as to the manoeuvring in heavy seas. The role of the wave forecast and weather routing software is also discussed.

A Development of Whipping Analysis Program for Ship Hulls (선체 휘핑 해석 전용 프로그램의 개발)

  • Seong-Whan Park;Jai-Kyung Lee;Sang-Heon Oh;Myung-Jae Song;Seung-Min Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.64-74
    • /
    • 2002
  • A special purposed program for ship hull strength analysis considering whipping phenomena is developed. In this program, the non-linear hydrodynamic impact force is considered using the momentum slamming theory and the hull girder is modeled as elastic body on the base of Timoshenko's beam theory. The numerical verifications are conducted in the view points that the effect of slamming impact force, the effect of hydro-elastic formulation, and the effect of various design parameters such as ship speed, wave amplitude, wave length and others. By the application of a real ship design process, the availability of the program is proved. This program has a GUI function for many I/O data process as well as the function to show the 2-D ship motion in the graphic window, and has other available functions for the whipping analysis.

A Study on the Whipping Phenomena Effect on the Structural Response of Large Container Ships (대형 컨테이너 선박의 구조 응답에 미치는 휘핑 영향도 분석)

  • Kim, Beom-Il;Kim, Min-Su;Seo, Sun-Kee;Park, Jae-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.341-349
    • /
    • 2018
  • Recently, it has been reported that the whipping response, which is the elastic phenomenon of the ship, may be one of the causes of the ship accident. Unfortunately, the commonly used methodology for evaluating the whipping effect effectively has not been developed yet. In this study, we developed a procedure to estimate the whipping effect of hull in actual design stage. Fluid-structure interaction analysis was performed for a dominant short term sea state to obtain the time series data of vertical wave bending moment including the whipping response by slamming. In order to estimate the whipping effect by using the time series, some signal processing and statistical techniques such as low pass filtering, Weibull fitting and so on, were applied. the hydro-elasticity analysis was performed on container ships of various sizes to evaluate the whipping effect. The parameters that can affect the response of the hull vibration was selected and the effect of these parameters on whipping was analyzed.

A study on accumulated damage of steel wedges with dead-rise 10° due to slamming loads

  • Seo, Byoungcheon;Truong, Dac Dung;Cho, Sangrai;Kim, Dongju;Park, Sookeun;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.520-528
    • /
    • 2018
  • This paper presents the results of experimental investigation on the elastic-plastic response of steel unstiffened wedges with dead-rise $10^{\circ}$ subjected to repeated impulsive pressure loadings. Repeated drop tests were performed with both wedge thickness and drop height varied. The pressure and histories were recorded during the tests and the permanent deflections were measured after every drop. Using the recorded test result, the effects of flexibility of wedges and repetition have been investigated. From the pressure history obtained from the tests the characteristics of the impulses were identified. Numerical simulations of the tests were made using the measured pressure history and the permanent deflection predictions were compared with those of the experiments.

Numerical Experimentations on Flow Impact Phenomena for 2-D Wedge Entry Problem (2차원 쐐기형 구조물 입수 시 발생하는 유체 충격 현상에 대한 수치 실험적 연구)

  • Yum, Duek-Joon;Du, Hun;Kim, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3374-3383
    • /
    • 2011
  • In this study, numerical analyses for slamming impact phenomena have been carried out using a 2-dimensional wedge shaped structure having finite deadrise angles. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct(or PLIC-VOF) scheme is used for the tracking of the deforming free surface. Numerical analyses are carried out for the deadrise angles of $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$. For each deadrise angle, variations are made for the grid size on the wedge bottom and for the entry speed. The magnitude and the location of impact pressure and the total drag force, which is the summation of pressure distributed at the bottom of the structure, are analyzed. Results of the analyses are compared with the results of the Dobrovol'skaya similarity solutions, the asymptotic solution based on the Wagner method and the solution of Boundary Element Method(BEM).

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).