• Title/Summary/Keyword: Slag cement

Search Result 1,115, Processing Time 0.022 seconds

Strength Characteristics of Blast Furnace Slag Concrete (미분말 고로슬래그를 사용한 콘크리트의 강도특성)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.137-143
    • /
    • 1997
  • The objective of this study is to find the strength properties of concrete using blast furnace slag. Its mechanical strength properties investigated include compressive strength, flexural strength, and tensile strength. The main expeirmental variables were cement type, coarse aggregate size(19, 25mm), and water/cement ratio(28, 32, 36%). The principal results obtained from this study are as follows ; it was possible to obtain the compressive strength of $500{\sim}700kg/cm^2$ concrete by using the blast furnace slag. Therefore, blast furnace slag was proved to be superior to ordinary portland cement in manufacturing the high strength concrete with the same mix conditions. In the near furture, concrete using blast furnace slag is expected to be practically used in the field.

  • PDF

Hydration Products, Morphology and Microstructure of Activated Slag Cement

  • Murmu, Meena;Singh, Suresh Prasad
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.61-68
    • /
    • 2014
  • This paper reports the physical properties and hydration products of slag cement that was prepared by activating ground granulated blast furnace slag with commercial lime and plaster of Paris (POP) as activators. The consistency, setting times and soundness of various mixes of slag-lime-POP is reported. The hydration products and formation of bonds in the paste during setting were studied with the help of SEM, FTIR and XRD tests and the same are correlated to the hydration process. The setting times of the mixes are found to be lower than that of the value prescribed for ordinary Portland cement (OPC). Borax is used as a setting retarder and a borax content of 0.4 % by mass gives setting times that are normally prescribed for OPC. In the early stages of setting C-A-S-H gels are found in this cementing material instead of C-S-H gel, as generally observed in the OPC.

Manufacturing Zero-Cement Bricks by Replacing Cement with Recycled Aggregates and Blast Furnace Slag Powder

  • Park, Kyung-Taek;Han, Cheon-Goo;Kim, Dae-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • In this study, a zero-cement brick is manufactured by replacing cement with recycled aggregates and blast furnace slag powder. Experimental tests were conducted with standard sized samples of $190{\times}57{\times}90mm$ (KS F 4004), and this manufacturing technique was simulated in practice. Results showed that the zero-cement brick with 0.35 W/B had the highest compressive strength, but the lowest absorption ratio. This absorption ratio of zero-cement brick with 0.35 W/B was lower than the required level determined by KS F 4004. Hence, to increase the absorption ratio, crushed fine aggregate (CA) and emulsified waste vegetable oil (EWO) were used in combination in the zero-cement brick. It was found that the zero-cement brick with CA of 20% and EWO of 1% had the optimum combination, in terms of having the optimum strength development (12 MPa) and the optimum absorption ratio (8.4%) that satisfies the level required by KS. In addition, it is demonstrated that for the manufacturing of zero-cement brick of 1000, this technique reduces the manufacturing cost by 5% compared with conventional cement brick.

Development of Fly Ash/slag Cement Using Alkali-activated Reaction(1) - Compressive strength and acid corrosion resistance - (알칼리 활성반응을 이용한 플라이 애쉬/슬래그 시멘트 개발(1) - 압축강도 및 산 저항성 -)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Kwan-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.801-809
    • /
    • 2007
  • Fly ash and blast furnace slag are an industrial by-product that can be alkali-activated to yield adhesive and cementitious materials, whose production is less energy-intensive and emits less $CO_2$ than ordinary Portland cement manufacture. A laboratory investigation was carried out to evaluate the effect of alkali-activating conditions on compressive strength of fly ash/slag cement and the acid corrosion resistance of this cement. Two alkali activator solution, NaOH and waterglass + NaOH solutions, were used. Waterglass concentration was the factor that gave the highest compressive strength in all tests. The next significant factor was the NaOH concentration, followed by curing temperature. Acid corrosion resistance of FC(fly ash cement) and FSC(fly ash/slag cement), such as sulfuric$(H_2SO_4)$ and hydrochloric acid(HCl), was for better than Portland cement(PC).

Performance Evaluation of Porous Hwang-toh Concrete Using Blast Furnace Slag Cement (고로슬래그시멘트를 사용한 다공성 황토콘크리트의 성능 평가)

  • Kim, Hwang-Hee;Kang, Su-Man;Park, Jong-Sik;Park, Sang-Woo;Jeon, Ji-Hong;Lee, Jin-Hyung;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • This study aims to evaluate a porous concrete using hwang-toh, blast furnace slag and blast furnace slag (BFS) cement instead of type I cement. The tests that were carried out to analysis the properties of porous hwang-toh BFS cement concrete included compressive strength, continuous void ratio, absorption rate, and pH value, repeated freezing and thawing test were conducted. Test results indicated that the performance in porous hwang-toh concrete are effective on the kaoline based binder materials. The pH value were shown in about 9.5 ~ 8.5. The compressive strength was increased and void ratio was decreased with increasing the kaoline based binder materials, respectively. The void ratio and compressive strength were in the range of about 21 ~ 30 %, 8 ~ 13 MPa, respectively. The increased in void ratio of more than 25 % is showed to reduce the resistance of repeated freezing and thawing. Also, the resistance of repeated freezing of thawing and the compressive strength of porous hwang-toh BFS cement concrete are independent with hwang-toh content and BFS cement amount. But, the void ratio was decreased with increasing the high volume hwang-toh contents (more than 15 %).

Hydraulic Reaction Analysis of C3A in Ordinary Portland Cement with Mineral Additions by Rietveld Method (리트벨트법에 의한 혼합재 첨가 보통 포틀랜드 시멘트 중 C3A 수화반응 해석)

  • Lim, Young-Jin;Lee, Seung-Heun;Cho, Jae-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.82-87
    • /
    • 2014
  • Due to the revised Korean standard KS L 5201 for Ordinary Portland Cement (OPC), the use of mixed cement has grown from 5% to 10%. This study investigates the hydration behavior of $C_3A$, asit is a cement mixture that is more commonly used than granulated blast furnace slag or limestone alone. Paste samples were prepared with either granulated blast furnace slag or limestone alone. Each sample was compared with the widely used Rietveld method with a cement mixture containing blast furnace slag or limestone. The hydration behavior of $C_3A$ in each OPC sample was assessed and results were analyzed. Granulated blast furnace slag promotes a high initial level of ettringite, but as the days passed, it promotes an increase in monosulfate, leading to cracks and expansion due to the penetration of sulfates in the solution. However, when limestone is added to the mixture, a transformation of ettringite to monosulfate occurs in the presence of the $CaCO_3$ in the limestone. It is considered that this produces hemi-carbonate and mono-carbonate and thus maintains the ettringite level.

Effect of curing temperature on the properties of ground granulated blast furnace slag-cement bentonite slurry

  • Kim, Taeyeon;Lee, Bongjik;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2022
  • To investigate the curing temperature effect on the engineering properties of ground granulated blast furnace slag-cement bentonite (GGBS-CB) slurry for cutoff walls, the laboratory experiments including the setting time, unconfined compressive strength, and permeability tests were carried out. The mixing procedure for GGBS-CB slurry was as follows: (1) montmorillonite-based bentonite slurry was first fabricated and hydrated for four hours, and (2) cement or GGBS with cement was added to the bentonite slurry. The dosage range of GGBS was from 0 to 90 % of cement by mass fraction. The GGBS-CB slurry specimens were cured and stored in environmental chamber at temperature of 14±1, 21±1, 28±1℃ and humidity of 95±2% until target days. The highest average temperature of three seasons in South Korea was selected and used for the tests. The experimental results indicated that in early age (less than 28 days) of curing the engineering properties of GGBS-CB slurry were primarily affected by the curing temperature, whereas the replacement ratio of GGBS became a main factor to determine the properties of the slurry as the curing time increased.

An Experimental Study on the Frost Resistance of High-Strength Concrete using Blast-Furnace Slag (고로슬래그를 이용한 고강도콘크리트의 내동해성에 관한 실험적 연구)

  • 박선규;유재강;강석표;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.671-674
    • /
    • 1999
  • With increasing content of granulated blase furnace slag in cement, the content of capillary pores in the mortar decreases and later age strength of the concrete. Therefore, this provides greater reserves study is carried out to estimate frost resistance of high-strength concrete specimens with water cement ratios using blast-furnace slag. 1. Blast furnace concrete is comparatively more good frost resistance than normal concrete. 2. As the blast furnace slag increases, the quantity of pores with a radius of more than 30nanometer decreses.

  • PDF

Properties of Reformed Electric Arc Furnace Slag as Cement Admixtures (용융개질 전기로슬래그의 시멘트 혼화재로서 특성)

  • Kim, Kee-seok;Bae, In-kook;Seo, Joo-beom;Choi, Jae-Seok;Lee, Yoon-kyu;Kim, Hyung-seok
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.31-37
    • /
    • 2015
  • Ground granulated blast-furnace slag (GGBFS) which is by-product of steel industry has been recycled as a cement admixture though the other steel slags are used as aggregates. In this study, the electric arc furnace slag (EAFS) was used as a cement admixture after the reduction of iron oxide in the slag at the interface of molten slag and water quenching. Consequently, the reformed EAFS (REAFS) had higher grindability than that of granulated blast furnace slag. And in mortar tests, the strength properties of specimens using REAFS were 98% of plain specimens of GGBFS upto 20% replacement ratio of GGBFS with REAFS.

Properties of Non Sintered Cement Mortar using Ferro Nickel Slag (페로니켈 슬래그를 사용한 비소성 시멘트 모르타르의 특성)

  • Youn, Min-Sik;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.641-649
    • /
    • 2022
  • This study aims to completely develop a non sintered cement mortar using industrial by-products. To replace Portland cement, blast furnace slag, circulating fluidized bed fly ash, and pulverized coal fly ash were used, and natural aggregates were substituted with ferronickel slag. To understand the characteristics of the non sintered cement mortar to which ferronickel slag is applied, an experiment was conducted by classifying the particle size. Fluidity and workability were confirmed through the flow test, and bending and compressive strength tests were conducted at 3, 7, and 28 days of age. In addition, durability was identified through a chloride ion penetration test. Through the study, it is judged that the binder, which completely replaced cement and aggregate, has high potential of being used as a construction material. Notably, it was confirmed to be advantageous for strength and durability.