• Title/Summary/Keyword: Slab Strength

Search Result 675, Processing Time 0.025 seconds

Correlation between Edge Scab and Corner Cracks on a Slab in Hot Strip Mill (열연 슬라브 모서리 크랙과 에지-스캡 결함의 연관성)

  • Kwon, H.C.;Lee, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.73-76
    • /
    • 2009
  • Increase in tensile strength of steel is important for fuel efficiency and $CO_2$ reduction. But the higher the strip strength, the more defect could be generated in hot strip mill. This study focuses on line-type edge scab. One of the causes for the defect is initial edge cracks commonly observed on a slab but their correlation has not been verified yet. Thus, the objective of this report is to verify if the edge crack is exactly the seed for edge scab. For this, we conducted pilot hot rolling test with cracked slab and compared the development of cracks and edge scabs on hot-rolled strip.

  • PDF

Behavior Properties of Bridge by Non Destructive and Loading Test (비파괴 및 재하시험에 의한 노후 교량의 거동특성)

  • Min, Jeong-Ki;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

An Experimental Study on Half Scale RC Slab Bridges Strengthened with Carbon Fiber Sheet (CFS로 보강된 모형 RC 슬래브 교량의 실험적 연구)

  • 심종성;김규선;김경민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.537-542
    • /
    • 1999
  • The design methodologies for carbon fiber sheet(CFS) strengthening of RC structures are not well established yet because the structural behavior of strengthened RC structures is more complex than that of unstrengthened ones. Even though the research for the methods using CFS has beed studied, the strengthening effects and structural behaviors of strengthened structures are not systematized yet. The purpose of this study is to carry out the experimental studies on three kinds of half scale RC slab bridges and to investigate the behavior of RC slab bridges from the experimental results. Typical flexural failure occurs in the non-strengthening slab like general RC slab bridges, and also the flexural failure occurs in the all area strengthened slab with sudden rip-off failure of strengthening material by punching shear. For the case of strip type strengthened slab, flexural failure occurs, with rip-off of second strip at the base of loading point. Strengthening effect on the slab using CFS is that the strength is increased upto 7~15 percent and the crack pattern is changed.

  • PDF

Experimental Study of High Strength Concrete Beam-Column-Slab Connections subjected to cyclic loading (고강도 콘크리트 보-기둥-슬래브 접합부의 반복하중 실험)

  • 오영훈;오정근;장극관;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.339-344
    • /
    • 1995
  • In the design of ductile moment-resisting frames (DMRFs) following the strong column-weak beam dsign philosophy, it is desirable that the joint and column remain essentially elastic in order to insure proper energy dissipation and lateral stability of the structure. The joint has been identified as the "weak link" in DMRFs because any stiffness or strength deterioration in this region can lead to substantial drifts and the possibility of collapse due to P-delta effects. Moreover, the engineer is faced with the difficult task of detailing an element whose size is determined by the framing members, but which must resist a set of loads very different from those used in the design of the beams and columns. Four 2/3-scale beam-column-slab joint assemblies were designed according to existing code requirements of ACI 318-89, representing interior joints of DMRFs with reinforced high strength concrete. The influence on aseismic behavior of beam-column joints due to monolithic slab, has been investigated.estigated.

  • PDF

Fatigue Behavior of Composite Beams with Pyramidal Shear Connector (입체트러스형 전단연결재를 갖는 합성판의 피로거동)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.211-216
    • /
    • 2002
  • A steel plate-concrete composite slab with pyramidal shear connectors, named TSC composite slab, is expected to have sufficient bending strength and flexural rigidity for loads during and after construction. Fatigue problems play an important role in designing composite slab as bridge decks under traffic conditions. In this paper, a series of fatigue tests was carried out on TSC beam specimens under various loading conditions, in order to evaluate the fatigue strength of TSC composite slabs. The results are as follows : (1) the fatigue failure of TSC composite beams results from the tensile fracture of bottom steel plate and shear connector, and (2) fatigue strength of the steel plate for two million cycles can be estimated to be $1144kgf/cm^2$ from the S-N curves.

Numerical analysis for the punching shear resistance of SFRC flat slabs

  • Baraa J.M. AL-Eliwi;Mohammed S. Al Jawahery
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.425-438
    • /
    • 2023
  • In this article, the performance of steel fiber-reinforced concrete (SFRC) flat slabs was investigated numerically. The influence of flexural steel reinforcement, steel fiber content, concrete compressive strength, and slab thickness were discussed. The numerical model was developed using ATENA-Gid, user-friendly software for non-linear structural analysis for the evaluation and design of reinforced concrete elements. The numerical model was calibrated based on eight experimental tests selected from the literature to validate the actual behavior of steel fiber in the numerical analysis. Then, a parametric study of 144 specimens was generated and discussed the impact of various parameters on the punching shear strength, and statistical analysis was carried out. The results showed that slab thickness, steel fiber content, and concrete compressive strength positively affect the punching shear capacity. The fib Model Code 2010 for specimens without steel fibers and the model of Muttoni and Ruiz for SFRC specimens presented a good agreement with the results of this study.

Estimation Method of Residual Performance for Hollow Slab at Elevated Temperature (고온에 노출된 중공슬래브의 잔존성능 추정방법)

  • Choi, Hyun-Ki;Chung, Joo-Hong;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.643-650
    • /
    • 2014
  • Generally, the reinforced concrete slab has great fire resistance performance because concrete has excellent thermal material properties under fire. But, in the case of hollow slab, it will be expected that hollow slabs have different temperature distribution and fire endurance performance compare to reinforced concrete slab. Because hollow slab has internal void space that occurs decreasing regenerative effect of concrete and formation of internal air layer. Evaluation method for fire resistance performance of hollow slabs was proposed using $wickstr{\ddot{o}}m^{\prime}s$ method. For the casual use of evaluation, simplified method was proposed which was limited to solid slab and donut type hollow slab which was developed by authors of this research paper. Also, verification on proposed method was performed by comparing results of fire experiment for hollow slab and evaluation results. Proposed method of the results of this study was possible to predict the residual strength and temperature distribution of slabs under fire.

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.