• Title/Summary/Keyword: Sky Model

Search Result 285, Processing Time 0.022 seconds

A Large Sky Simulator : A Reproduction of CIE Sky Condition and Daylighting Evaluation using Scale Model

  • Yu, In-Hye;Ahn, Hyun-Tae;Kim, Jeong-Tai
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2007
  • KH University has developed a large sky simulator which is its scale suits international standard. To verify the reliability of the sky simulator, the luminance of 36 points on the inner sky surface was measured and compared with the CIE standard overcast sky model. It was found that the sky simulator can reproduce the CIE standard overcast sky condition with 1.8[%] of mean difference. To identify the differences of daylighting performance, scale model measurements were taken under a real sky and in a sky simulator. Under overcast sky conditions, two kinds of scale model experiments were conducted by using the photometric sensor Li-cor. Firstly, a 1/20 scale model of a side-lit office room 4.9[m] wide, 7.2[m] long, and 2.6[m] high was created. Five measurement points were set at 1.2[m], 2.4[m], 3.6[m], 4.8[m], and 6.0[m] from the window. The mean difference of the light factor between the sky simulator and real sky was 7.1[%]. Secondly, a 1/30 scale model of a top-lit atrium 15[m] wide, 15[m] long, and 15[m] high was created. The measurement point was set at center of the room and the well indexes of the model were set in 5 types. The mean difference of the light factor between the sky simulator and real sky was 1.7[%]. This proved that the sky simulator is fully accurate and usable for daylighting research.

Development and its Validation of Sky Simulator Facilities for Daylighting Evaluation (자연채광 성능평가용 인공천공돔(Sky Simulator)의 개발 및 신뢰성 검증)

  • Kim, Jeong-Tai;Kim, Gon;Yu, In-Hye
    • KIEAE Journal
    • /
    • v.5 no.4
    • /
    • pp.51-57
    • /
    • 2005
  • For the evaluating daylighting performance, field measurement, scale model test and a set of computer tools can be applied. For the scale model measurements, the sky simulator is a vital facility to represent the desired sky conditions consistently. Recently K university has developed a large size sky simulator, 6m-diameter and 3.7m-height, that is suitable for the international standard. To verify the reliability of the sky simulator, the luminance distribution on the inner sky surface was measured and compared with the CIE standard overcast sky model. It is found that the sky simulator can be reproduced the CIE standard overcast sky condition with 4.3% as mean difference. K university sky simulator is fully validated for usability and accuracy for daylighting researches.

An Equivalent Model for Seismic Analysis of Structures Connected by a Sky-bridge (Sky-bridge로 연결된 구조물의 지진해석을 위한 등가모델)

  • Yang, Ah-Ram;Kim, Hyun-Su;Lee, Dong-Guen;Ah, Sang-Kyung;Oh, Jung-Keun;Moon, Yeong-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.203-208
    • /
    • 2008
  • Recently, high-rise building structures connected by a sky-bridge are frequently constructed. To predict accurate dynamic responses of structures connected a sky-bridge, time history analysis is required. Repetitive analyses are required in the design process. If the entire structure model is employed in the repetitive time history analysis, it would take a lot of computational time and engineers' efforts. Therefore, an equivalent model for high-rise building structures connected by a sky-bridge was proposed in this study. The proposed model consists of cantilever having original structure's stiffnesses and masses. Based on the analytical results, it has been shown that the equivalent model can reduce the analysis time and provide similar seismic responses to the original model.

  • PDF

Validation and Development of Artificial Sky Dome Facilities with a Heliodon (인공 천공돔과 헬리오돈의 개발 및 성능실험 사례 연구)

  • Kim, Jeong-Tai;Kim, Gon
    • KIEAE Journal
    • /
    • v.3 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • Scale model measurements should be conducted under an actual sky or in a simulated sky where conditions can be held constant. A number of successful attempts have been made to develop artificial sky domes with man-made sun emulators. With reference to formerly-developed examples, sky simulator facility has recently been activated in oder to provide desirable sky conditions for teaching and studies. The structure is a 6m-diameter dome and promises to set various condition for energy related and lighting research activities. The sky dome is also equipped a heliodon, the tilt table, to facilitate additive direct sun impact under clear skies. Shading studies, using scale models with the heliodon, reveal how a building's design blocks or permits light's passage to the interior; solar access studies, and tests of the reflection and transmittance characteristics of new daylighting technologies. The design and construction specification and the initial operating experience with a building configuration are reported.

Prediction of the Summer Effective Sky Temperatrure during the Clear Day on Osan City (오산시의 맑은날 하절기 등가 하늘온도 예측)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.100-106
    • /
    • 2010
  • The purpose of this study is to predict the effective sky temperature on Osan City during the summer. The north latitude, east longitude of Osan City is $37^{\circ}06'$ and $127^{\circ}02'$. The altitude from the sea level is 48m. Empirical relations of the effective sky temperature suggested by Duffie and Beckman are compared on clear days. For the effective sky temperature prediction, data measured by the Korea Meteorological Administration is used as an input to the Bliss model. Both Hottel and Krondratyev model are used to calculate the water vapor emissivity. The results using Hottel's model match well with the empirical relation proposed by Bliss. The results show maximum, minimum, and average values depending on water vapor emissivity model. The maximum deviation is about 10K and is due to total emissivity model.

Modal Sky-Hook Dampers for Active Suspension Control (능동형 현가시스템을 위한 모드 SKY-HOOK 감쇠 제어기)

  • 곽병학;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1995
  • Active suspension control for vehicles is developed to improve both ride comfort and steering stability which are in trade off relation. In this study, the modal sky-hook controller for 7 D. O. F. model is proposed to resolve the problems such as computaional power restriction and uncertainties in modeling of systems and environments. Modal sky-hook controller reduces the coupling between the modes to be controlled. The simulation result for ride comfort shows that the perform ance of the proposed controller matches that of the optimal controller. Systematic method of determining its gain is proposed. The model sky-hook controller shows the robustness to road irregularity and modeling error.

  • PDF

A Study on Prediction Method of Sky Luminance Distributions for CIE Overcast Sky and CIE Clear Sky (CIE 표준 담천공과 청천공 모델의 천공 휘도분포 예측 방법에 관한 연구)

  • Kim, Chul-Ho;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.33-43
    • /
    • 2016
  • Daylight is an important factor which influences building energy efficiency and visual comfort for occupants. It is important to predict precise sky luminance at the early stages of design to reduce light energy in the building. This study predicted sky luminance distributions of standard sky model(CIE overcast sky, CIE clear sky) that was provided from the CIE(Commission internationale de $l^{\prime}{\acute{e}}clairage$). Afterward, result of sky luminance was compared and verified with simulation value of Radiance program. From the CIE overcast sky, zenith and horizon ratio is about 3:1. From the CIE clear sky, luminance value gets most high value around the sun. On the other hand, luminance value is the lowest in the opposite direction of the sun when angle is $90^{\circ}$ between the sun and sky element. As a result of comparing the calculation results with Radiance program, sky luminance prediction error rate is 0.4~1.3% when it is CIE overcast sky. Also, sky luminance prediction error rate is 0.3~1.5% when it is CIE clear sky. When compared with the results of radiance simulation, it was evaluated as fairly accurate.

Development and Validation of Sky Simulator for Reproducing CIE Overcast Sky Model (돔형 인공천공의 개발 및 CIE표준담천공 구현 검증에 관한 연구)

  • Shin, Ju Young;Yun, Geun Young;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.97-103
    • /
    • 2010
  • Sky simulator is a effective daylighting design tool that can evaluate three dimensional performance of lighting. Especially, the dome type sky simulator offer reliable and reproducible daylighting performance with different standard sky models. Recently, K university has developed the dome type sky simulator(sky dome) with the diameter of 6.5m and the height of 3.7m. The sky dome consists of a group of 145 large steel panels with 72 halogen lamps which are arranged in a circular array. The luminance distribution of the sky dome can be calibrated by changing the angle and the brightness of the lamps respectively. To allow more reliable prediction and evaluation of daylighting through the sky dome, It is essential to validate the sky luminance distribution of the sky dome. This study consider the validation of the comparisons between the measured and the calculated luminance values for the CIE standard overcast sky. Also, the error rate between the measured and the calculated luminance values were compared to the previous studies. The results indicated that the K university sky dome can reproduce reliable CIE standard overcast sky with the average relative error rate of 4.4% and root-mean-square error(RMSE) of 5.4%.

Efficient Dynamic Analysis of High-rise Buildings Having Belt Walls Connected by a Sky-Bridge (스카이브릿지로 연결된 벨트월이 있는 고층건물의 효율적인 동적해석)

  • Lee, Dong-Guen;Kim, Hyun-Su;Yang, Ah-Ram;Ko, Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.231-242
    • /
    • 2009
  • In the design of a sky-bridge, repetitive boundary nonlinear time history analyses are required to accurately predict dynamic behaviors of the connected buildings because the connection systems of a sky-bridge usually have high nonlinearity. If a conventional finite element model for entire high-rise buildings is used for repetitive boundary nonlinear time history analyses, computational efforts could be significant. In this study, an equivalent cantilever model considering the belt-wall effect has been proposed for an efficient dynamic analysis and a performance evaluation of vibration control of high-rise buildings connected by a sky-bridge. To verify the accuracy and efficiency of the proposed equivalent model, boundary nonlinear time history analyses of 49- and 42-story example buildings connected by a sky-bridge have been performed for wind excitation. Based on the analytical results, it has been verified that the proposed equivalent model can provide accurate dynamic responses of building structures connected by a sky-bridge with significantly reduced computational efforts.

Comparative Evaluation of Sky-Hook Controllers for a Full Car Model with Active or Semi-Active Suspension Systems (능동과 반능동 현가장치로 된 전차량 모델에 대한 스카이훅 제어기의 비교 평가)

  • Yun, Il-Jung;Im, Jae-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.614-621
    • /
    • 2001
  • The controllers for a full car 7-DOF model with 4 active or semi-active suspension units are designed and evaluated in this research. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-actvie, and on-off suspension systems, are analyzed and evaluated with respect to ride comfort. The vehicle dynamic performances are expressed by response curves to a bump input, performance indices for asphalt road input, and frequency characteristic curves. Heaving, rolling, and pitching inputs are applied to the vehicle dynamic system to evaluate frequency characteristics. The simulation results show that the ride quality of the sky-hook controller approaches that the full state feedback controller more closely in semi-active suspension system than in active suspension system. For the implementation of a vehicle with sky-hook suspension control systems in this paper, 7 velocity sensors are required to measure the states.

  • PDF