• Title/Summary/Keyword: Skin surface temperature

Search Result 228, Processing Time 0.025 seconds

Investigation of thermal deformation of wing skin induced by temperature gradient (온도 구배에 의한 날개 외피의 열변형 특성 연구)

  • Kim, Jeong-Beom;Kim, Hong-Il;Kim, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.896-901
    • /
    • 2015
  • The skin-frame type structure is designed to investigate the thermal deformation of the wing skin induced by the temperature gradient. In order to effectively simulate the temperature gradient on the wing specimen, a water cooling system is devised on the frame of the specimen. Out of surface skin deformation of the skin-frame type structure made of SUS304 material with respect to the temperature is successfully measured using the digital image correlation (DIC) technique including quantitative evaluation of the measurement uncertainty.

Thermal Distribution in Living Tissue during Warm Needling Therapy (온침 시술 시 생체 조직 내 열분포 분석에 관한 연구)

  • Kim, Jongyeon;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • Objectives This study aims to analyze a thermal distribution in biological living tissue during warm needling therapy by using a finite element method. The analysis provides an understanding of warm needling's efficacy and safety. Methods A model which consisted of four-layered tissue and stainless steel needle was adopted to analyze the thermal distribution in living tissue with a bioheat transfer analysis. The governing equation for the analysis was a Pennes' bioheat equation. A heat source characteristic of warm needling therapy was obtained by previous experimental measurements. The first analysis of the time-dependent temperature distribution was conducted through points on a boundary between the needle and the tissue. The second analysis was conducted to visualize the horizontal temperature distribution. Results When heat source's peak temperatures was above $500^{\circ}C$ and temperature rising rates were relatively slow, the peak temperature at skin surface exceeded a threshold of pain and tissue damage ($45^{\circ}C$), whereas when the peak temperature was around $400^{\circ}C$, the peak temperature at the skin surface was within a safe limit. In addition, the conduction of combustion energy from the moxa was limited to the skin layer around the needle. Conclusions The results suggest that the skin layer around the needle can be heated effectively by warm needling therapy, but it appears to have little effect at the deeper tissue. These findings enhance our understanding of the efficacy and the safety of the warm needling therapy.

The Effect of Electrical Stimulation on the Changes of Skin Temperature in Normal and Low Back Pain Patients (전기자극이 정상인과 요통환자의 체표면 온도 변화에 미치는 영향)

  • Park, Don-Mork;Lim, Jung-Do
    • Journal of Korean Physical Therapy Science
    • /
    • v.5 no.4
    • /
    • pp.817-830
    • /
    • 1998
  • The purpose of this study is to investigate the relationship between effects of TENS (Transcutaneous Electrical Nerve Stimulation) and IFC(Interferrential Current Therapy) to the change of body surface temperature. Cases are 22 normal persons and 22 patients with low back pain. Digital Infrared Thermal Imaging system was used for the detection of body surface temperature. 50Hz in frequency and 25-35mA in intensity were applied to TENS and IFC, 15 and 10 minutes on each. The results were follows ; 1. TENS and IFC has on effect of decreasing surface temperature, which would be from cardiovascular factors. (P<0.001) 2. The influence of IFC to the body surface temperature is greater than TENS, and it seems to be vasoconstriction of sympathetic activity. 3. There were no significant differences of body surface temperature between the two groups before and after electrical stimulation.

  • PDF

Effects of Individual Sweating Response on Changes in Skin Blood Flow and Temperature Induced by Heat of Sorption Wearing Cotton Ensemble

  • Tanaka, Kaori;Hirata, Kozo
    • Fashion & Textile Research Journal
    • /
    • v.2 no.5
    • /
    • pp.398-404
    • /
    • 2000
  • We examined the effect of individual sweating responses on thermoregulatory responses induced by heat of sorption, immediately after the onset of sweating. The present study consists of two experiments. In experiment 1, made of 100% cotton (C) and 100% polyester (P) clothing were exposed in the chamber at ambient temperature (Ta) of $27.2^{\circ}C$ and relative humidity (rh) raised from 50% to 95% at five different increase rates of environmental vapor pressure (VP). The increase rate of clothing surface temperature (Tcs), peak Tcs and peak time showed significant correlation with the increase rate of environmental VP in C-clothing (p<0.05). In experiment 2, seven female subjects were studied during leg water immersion ($35-41^{\circ}C$) for 70min in Ta of 27.2 and 50%rh. There were significant positive correlations in the increase rate of clothing microclimate VP vs. changes in Tcs, skin blood flow, mean skin temperature and mean body temperature (p<0.05). The present results showed that individual clothing microclimate VP had significant effects on thermoregulatory responses induced by heat of sorption wearing C ensembles.

  • PDF

A Study on the Bed Climate and the Physiological Responses in Sleep. - On Ondol Environment - (수면시 침상기후와 인체생리반응에 관한 연구 -온돌환경을 중심으로-)

  • Kim Myung Ju;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.2 s.38
    • /
    • pp.77-87
    • /
    • 1991
  • The purpose of this study were to investigate the bed climate and the physiological responses in sleep on the traditional Korean floor heating system called Ondol. Ondol has been the most widely used heating system in Korea, yet there has been a no systematic studies examined its environmental effects on human body. Experimental room was constructed to match the typical thermal environment of Ondol. (floor surface temperature; $32\~33^{\circ}C$, air temperature; $22.5{\pm}1.0^{\circ}C$, relative humidity; $64.0{\pm}4.0\%$RH, air velocity; 0.25 m/sec.) Three different combinations of bedclothes were chosen for the experiment based on the study results showing that they were the most widely used types in Korea. Type 1 was the combination of a cotton-padded mattress with a cotton-padded Korean style blanket. Type 2 was a cotton-padded mattress with a cotton-guilted Korean style blanket. Type 3 was a cotton-padded matless with a polyacryl blanket. Thermal resistance of each of these combina-tions in the bedclothes was measured using thermal manikin. Two adult female was chosen for the seven hour sleeping experiment which was known to be the average sleeping hours of Korean adult female. The bed climate was measured with the temperature under the mattress, the surface temper-ature of the mattress, and the air temperature and the relative humidity of the space between the mattress and blanket. The skin temperature, rectal temperature of the subjects and the bed climate were measured eight times, one hour before the experiment and every hour during the experiment. The weight loss and the subjective sensation were measured for the each subjects before and after the experiment. The procedure was repeated twice with two subjects and three types of bedclothes, yielding twelve combinations of results. The results were as follows; 1. With the surface temperature of $32\~33^{\circ}C$ of Ondol, air temperature was $22.5{\pm}1.0^{\circ}C$ with $64.0{\pm}4.0\%$ RH. The bed climates were $39.2{\pm}40.8^{\circ}C$ under the mattress, $35.3\~36.2^{\circ}C$ on the mattress, and $26.9\~32.0^{\circ}C$ with $56.0\~71.3\%$ RH between the mattress and the blanket. 2. Mean skim temperature during sleep was 34.2"C with local skin temperature of $34.0\~35.5^{\circ}C$. The skin temperatures of abdomen, thigh, foot were higher than the other parts of the body. 3. The skin temperature of chest, thigh, leg and back varied significantly according to the combinations of bedclothes. With the cotton-padded blanket, the skin temperature was the highest, while with the cotton-guilted blanket showed lowest. 4. Examining the relationship between the mean skin temperature and the local skin temper-ature, the chest temperature showed the highest correlation with the former. Therefore, the chest temperature can be recommended to represent the skin temperature in measuring the bed climate. 5. The subjective bed climates were $39.0\~40.4^{\circ}C$ under the mattress, $35.2\~35.9^{\circ}C$ on the mattress, $29.8\~31.6^{\circ}C$ with $56.8\~68.4\%$ RH between the mattress and blanket. In sum, from this experiment we not only obtained the reliable value of bed climates on Ondol, but also showed that the bed climates and the physiological responses were affected differently according to the materials of bed clothes.

  • PDF

Human Solar Heat Load and Thermal Comfort in an Outdoor Environment (건축외부공간에 있어서 인체의 일사열부하(日射熱負荷) 및 열적(熱的) 쾌적성(快適性)에 관한 실험적 연구)

  • Jeong, Chang-Won;Yoon, In
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.2
    • /
    • pp.65-74
    • /
    • 1998
  • The purpose of this paper is to investigate the mount of relief of human solar heat load and thermal comfort in outdoor environment in summer, Six different types of sites, T garden and its neighboring area in Japan, were selected as the experiment sites. The experiments were conducted from 22 to 29 August, 1994 to find the relationship between climatic conditions and human responses, Climatic conditions, subjects's thermal sensation and skin temperature were measured. Radiant heat exchange on the human body was estimated on the basis of the measured air and surface temperature and solar radiation. Thermal index Operative Temperature and New Effective Temperature was modified with the effect of the radiant heat exchange. Human thermal comfort and skin temperature is affected by the solar radiation and the sky factor in an outdoor environment. The effect of tree shade was verified on thermal comfort, The mount of relief of human solar heat load is relation to the existence of shade a solar radiation and the sky factor. The urban garden is one of the effective design element in an urban environmental planning.

  • PDF

Mordanting effect of Chestnut's inner skin on the cow leather dyed with Turmeric powder (우피의 울금 염색시 사용된 율피의 매염 효과)

  • Bai, Sang-Kyoung
    • Journal of Fashion Business
    • /
    • v.16 no.4
    • /
    • pp.100-106
    • /
    • 2012
  • This research was carried out to find the mordant effect of Chestnut's inner skin on the cow leather dyed by Turmeric powder. The best proper mordanting conditions were examined by changing mordant method, concentration, temperature, bath ratio, time, and repetition. Also dyeability and surface color changes were evaluated by various mordanting methods. The optimum mordanting conditions of chestnut's inner skin extract on the cow leather were pre mordant, 80%, $50^{\circ}C$, 50:1, 40minutes, 4 repetition. The K/S values as a mordant were higher in pre mordant than post mordanting condition. Although the ${\Delta}E$ was slightly higher in post mordant than pre mordant, it was too small to find any means. The surface colors of all dyed cow leathers were yellow. Among light, dry cleaning, and abrasion fastnesses, only light fastness was increased one degree, others were same degrees.

Relationship between Total Body Fat and S/V Ratio and Body Cooling for Two Hours at $15^{\circ}C$ (한냉에 노출된 인체의 냉각과 총지방량 및 S/V 비율 사이의 관계)

  • Chung, Kwan-Ogg;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.3 no.1
    • /
    • pp.19-28
    • /
    • 1969
  • Skin temperatures on 10 sites and rectal temperature at every 10 minutes, oxygen consumption at every 20 minutes were measured on 18 male subjects (ages between 14 and 47 years) after exposure to cold air at $15^{\circ}C$ for two hours in a climatic room. Total body fat measured by means of a skinfold method and ratio of body surface area (S) to body volume (V), S/V, were utilized as basis of observations. Surface area was calculated after DuBois equation and body volume was calculated by our original formula. In influencing on the heat loss from the body core to the cold environment, % fat showed inverse relations, whereas, S/V ratio showed direct relations. Thus these two factors acted antagonistically on the body heat loss. Local skin temperatures showed negative correlations with skinfold thickness on the same site, nemaly, on chest, r=-.567; on back, r=-.507; and on upper arm, r=-.353. The other 7 skin sites showed low correlations with % fat. Minimum mean weighted skin temperature (MWST) showed a negative correlation (r=-.443) with % fat, and showed no correlation with S/V ratio. Oxygen consumption in the cold air at $15^{\circ}C$ increased from the first measurement at 20 minutes after exposure and maintained the same increasing trend up to 120 minutes. ${\Delta}T_R$ was greater in tile lean subjects who showed a greater % change in oxygen consumption. The antagonistic actions of % fat and S/V ratio on the heat loss were manifested by observations as follows: minimum rectal temperature was higher In fat subjects (r=.600) and lower in subjects with a greater S/V ratio (=-.582), ${\Delta}T_R$ was smaller in fat subjects (r=-.738) and greater in subjects with a greater S/V ratio (r=.618). Temperature difference between body core and skin surface (minimum rectal temperature minus minimum MWST) showed a positive correlation with % fat (r=.600) and a negative correlation with S/V ratio (r=-.881). Decrease in the mean body temperature and heat debt, respectively, showed negative correlations with % fat and positive correlations with S/V ratio.

  • PDF

Technical Trend of Multi-function for Nano-magnetic Material (다기능성 나노자성복합소재 기술동향)

  • Kim, Yu-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • Recently, it has been developed for Eco-environment, Super light, Multi-functional nano materials. As needed mobile parts in Smart phone or TV, computer, information communication for high pass signal, multi-function, Magnetic thin film materials have been developed. As last, magnetic powder, sintered and sputtering parts were thick and low purity than electroplating layer, low pass signal and noise were resulted, vibrated TV screen. Because chemical complex temperature was high and ununiform surface layer, it has been very difficult for data pass in High Frequency (GHz) area. Large capacity data pass is used to GHz. Above GHz, signal pass velocity is dependent on Skin Effect of surface layer. If surface layer is thick or ununiform, attachment is poor, low pass signal and cross talk, noise are produced and leaked. It has been reported technical trend of Electrochemically plating and Surface treatment of Metal, Polymer, Ceramic etc. by dispersion/complex for Multi functional nano-magnetic material in this paper.

Study on Optimization and Skin Permeation of PIT Nanoemulsion Containing α-Bisabolol (α-Bisabolol을 함유한 PIT Nanoemulsion의 최적화 및 피부흡수연구)

  • Kim, HuiJu;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1738-1751
    • /
    • 2020
  • The skin is divided into three parts: the epidermis, the dermis, and the subcutaneous fat, and the stratum corneum, which is located at the top of the epidermis, acts as a barrier that prevents drug delivery. Nanoemulsions are known to be effective in transdermal delivery of drugs through intercellular lipids because of their unique small particle size. In this study, phase inversion temperature (PIT) nanoemulsion containing α-bisabolol was optimized using response surface methodology (RSM) for effective skin absorption of α-bisabolol. As a preliminary experiment, the 25-2 fractional factorial design method and the 23 full factorial design method were performed. Box-Behnken design was performed based on the results of the factorial design method. The content of surfactant (6.3~12.6%), co-surfactant (5.2~7.8%) and α-bisabolol (0.5~5.0%) were used as factors, and the dependent variable was the particle size of the nanoemulsion. PIT nanoemulsion optimization was performed according to the RSM results, and as a result, the optimal nanoemulsion formulation conditions were predicted to be 10.4% surfactant content, 6.3% co-surfactant content, and 5.0% α-bisabolol content. As a result of the skin absorption test, the final skin absorption rate of the PIT nanoemulsion was 35.11±1.01%, and the final skin absorption rate of the general emulsion as a control was 28.25±1.69%, confirming that the skin absorption rate of the PIT nanoemulsion was better.