• Title/Summary/Keyword: Skin Inflammation

Search Result 749, Processing Time 0.028 seconds

The Effects of Jawoongo(紫雲膏) on UVB Damage to Skin And Photoaging (자운고(紫雲膏)가 자외선에 의한 피부손상 및 광노화(光老化)에 미치는 영향)

  • Jeon, Jae-Hong;Hong, Seung-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.1 s.32
    • /
    • pp.130-144
    • /
    • 2007
  • UV-irradiated skin shows acutely erythema, edema, pigmantation (sunbum) and chronically coarse wrinkling, roughness, dryness, laxity (photoaging). Jawoongo(紫雲膏, JW) is clinically useful external application and effective bum, sunburn, wound and symptom of dryness(燥症) in skin disease. In this experiment, we examined if JW could cure the UVB-mediated acute skin damages, inhibit UVB-mediated oxidative stress and inflammation of skin, and block the photoaging. In vivo test, we found that JW could effectively cure the UVB-mediated acute skin damages(erythema, edema, angiogenesis, hyperplasia, infiltration of lymphocytes) and inhibit expression of HSP70, CYP1A1 and p53. We also found that JW could repair destruction of collagen fiber and inhibit activation of MMP-9, and inhibit expression of $NF-{\kappa}B$ p65, iNOS, hyperplasia of keratynocyte. In vitro test, we found that JW could inhibit expression of IKK, iNOS mRNA, and production of NO. These findings shows that JW could cure the UVB-mediated acute skin damages, inhibit UVB-mediated oxidative stress and inflammation of skin, and block photoaging.

  • PDF

The Effects of Polygonum Cuspidatum on the Skin Functions (호장근추출물이 피부질환 및 피부미용에 미치는 영향)

  • Jung, Hyun-A;Roh, Seok-Seon;Oh, Min-Suck
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.1
    • /
    • pp.73-89
    • /
    • 2009
  • Objectives : This study was carried out to investigate the effects of Polygonum cuspidatum extract on several skin functions including inflammation and wrinkle formation. Methods : To investigate in vitro anti-oxidant activity assay, ethanol extracts of medicinal plants tested by DPPH method. In the next experiment, to investigate anti-inflammatory test, the RAW 264.7 macrophage cells was cultured using DMEM including the 10% FBS. To study anti-allergic effect, we blended cultured Human Mast Cells(HMC-1), and then observe $TNF-{\alpha}$, IL-8 by ELISA Results : Polygonum Cuspidatum extract has the effects of anti-inflammation and anti-allergy, which may be due to its inhibitory potential on the macrophage activation. Furthermore, Polygonum Cuspidatum extract has the anti-wrinkle effects through the inhibitory potential on the collagnease, elastase and gelatinase activities. Conclusions : The above results suggest that Polygonum Cuspidatum extract could be applicable for improvement of several skin functions.

Recent Research Trends of Hataedock (하태독법의 최신 연구 동향)

  • Ju, Hyun Ju;Cheon, Jin Hong;Kim, Ki Bong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.31-42
    • /
    • 2020
  • Objectives The purpose of this study is to perform a review on recent researches of Hataedock, a traditional method of removing fetal toxin by dropping herbal extracts in the mouth, to appraise its preventive and therapeutic effects of diseases. Methods Studies of Hataedock were extracted from both Chinese and Korean medical journals published within 10 years, from January 2010 to January 2020. Clinical studies and experimental researches were analyzed and categorized to skin disease, allergic rhinitis, intestinal mucosa inflammation and anal fistula for further evaluation. Results Among 194 studies were searched and screened, 22 met designated criteria. Hataedock showed the effectiveness in treating skin disease, allergic rhinitis, intestinal mucosa inflammation and anal fistula by maintaining skin barrier and regulating immune system. Coptis japonica, Glycyrrhiza uralensis, and Fermented Glycine max were mainly used as herbal extracts in Hataedock. Conclusion This study shows the recent research trends of Hataedock and suggests that Hataedock can be considered as a method of treatment or prevention to some of the incurable chronic diseases.

Extracts of Grifola frondosa inhibit the MAPK signaling pathways involved in keratinocyte inflammation and ameliorate atopic dermatitis

  • Eun-Ju Choi;Jin Kyeong Choi
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1056-1069
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Grifola frondosa, commonly referred to as the maitake mushroom, has been studied extensively to explore its potential health benefits. However, its anti-inflammatory effects in skin disorders have not been sufficiently elucidated. This study aimed to elucidate the anti-inflammatory role of the ethanol extract of G. frondosa in atopic dermatitis (AD) using in vivo and in vitro models. MATERIALS/METHODS: We investigated its impact on skin and spleen inflammatory responses in Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in a mouse model. Additionally, we determined the immunosuppressive response and mechanism of G. frondosa by inducing atopic-like immune reactions in keratinocytes through tumor necrosis factor (TNF)-α/interferon (IFN)-γ stimulation. RESULTS: Our study revealed that G. frondosa ameliorates clinical symptoms in an AD-like mouse model. These effects contributed to the suppression of Th1, Th2, Th17, and Th22 immune responses in the skin and spleen, leading to protection against cutaneous inflammation. Furthermore, G. frondosa inhibited the production of antibodies immunoglobulin (Ig)E and IgG2a in the serum of AD mice. Importantly, the inhibitory effect of G. frondosa on inflammatory cytokines in TNF-α/IFN-γ-stimulated AD-like keratinocytes was associated with the suppression of MAPK (Mitogen Activated Protein Kinase) pathway activation. CONCLUSIONS: Collectively, these findings highlight the potential of G. frondosa as a novel therapeutic agent for AD treatment and prevention.

Cytokines Regulate the Expression of the Thymus and Activation-Regulated Chemokine (TARC; CCL17) in Human Skin Fibroblast Cells

  • Lee, Ji-Sook;Kim, In-Sik;Kim, Dong-Hee;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Allergic inflammation is thought to be a Th2 cell-dominant immune response during which tissue-resident fibroblasts produce chemokines which contribute to the recruitment of migratory leukocytes to sites of tissue injury. Thymus and activation-regulated chemokine (TARC; CCL17) is a potent member of the CC chemokine family and a selective chemoattractant for Th2 cells. In order to study the regulatory profiles of TARC production by $TNF-{\alpha}$, $IFN-{\gamma}$, and Il-4 in human normal skin fibroblast, CCD-986sk cell line was used. The expression of TARC protein was measured using ELISA, and mRNA level was detected by RT-PCR. The combination of $TNF-{\alpha}$ and IL-4 induced a time-and dose-dependent synergistic increase in the expression of TARC at both protein and mRNA levels in the cultured human skin fibroblasts. Exposure of the cells to single cytokine had no effect on TARC expression. The high concentration (100 ng/ml) and long incubation time (72 h) of $IFN-{\gamma}$ further enhanced the TARC production induced by $TNF-{\alpha}$/lL-4 in the skin fibroblast. This synergistic effect of Th1 and Th2 type cytokines on TARC production by skin fibroblasts may contribute to the inflammatory cell infiltration and tissue damage with allergic inflammation.

Orobol, A Derivative of Genistein, Inhibits Heat-Killed Propionibacterium acnes-Induced Inflammation in HaCaT Keratinocytes

  • Oh, Yunsil;Hwang, Hwan Ju;Yang, Hee;Kim, Jong Hun;Yoon Park, Jung Han;Kim, Jong-Eun;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1379-1386
    • /
    • 2020
  • Acne is a chronic skin disease that typically occurs in the teens and twenties, and its symptoms vary according to age, sex, diet, and lifestyle. The condition is characterized by hyperproliferation of keratinocytes in the epidermis, sebum overproduction, excessive growth of Propionibacterium acnes, and P. acnes-induced skin inflammation. Interleukin (IL)-1α and IL-6 are predominant in the inflammatory lesions of acne vulgaris. These cytokines induce an inflammatory reaction in the skin in the presence of pathogens or stresses. Moreover, IL-1α accelerates the production of keratin 16, which is typically expressed in wounded or aberrant skin, leading to abnormalities in architecture and hyperkeratinization. Orobol (3',4',5,7-tetrahydroxyisoflavone) is a metabolite of genistein that inhibited the P. acnes-induced increases in IL-6 and IL-1α levels in human keratinocytes (HaCaTs) more effectively compared with salicylic acid. In addition, orobol decreased the IL-1α and IL-6 mRNA levels and inhibited the phosphorylation of inhibitor of kappa-B kinase, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, and mitogen-activated protein kinase induced by P. acnes. Finally, the expression of Ki67 was decreased by orobol. Thus, orobol ameliorated the inflammation and hyperkeratinization induced by heat-killed P. acnes and thus has potential for use in functional foods and cosmetics.

Fractionated Trapa japonica Extracts Inhibit ROS-induced Skin Inflammation in HaCaT keratinocytes (각질형성세포에서 ROS로 유도된 염증반응에 대한 능실 추출물 및 그 분획물의 항염 효과)

  • Nam, Jin-Ju;Kim, Youn Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Ultraviolet B (UVB) irradiation induces both production of reactive oxygen species (ROS) and glucocorticoids (GCs)-mediated stress responses such as an increase of $11{\beta}$-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1) activity in skin. In addition, ROS-induced inflammatory mediators and proinflammatory cytokines trigger skin inflammation. In this study, as $11{\beta}$-HSD1 inhibitor recovered a decrease of catalase expression, we investigated whether Trapa japonica (TJ) extract and its fractions could inhibit $11{\beta}$-HSD1/ROS-induced skin inflammation in HaCaT keratinocytes. TJ extract and its fractions inhibited expressions of $11{\beta}$-HSD1 as well as the increase of ROS in UVB-exposed HaCaT keratinocytes. Moreover, proinflammatory cytokines such as interleukin (IL)- ${\alpha}$, - ${\beta}$ and tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) as inflammatory mediators were also inhibited in both mRNA and protein levels. Finally, prostaglandin $E_2$ ($PGE_2$) produced by COX-2 was inhibited effectively by TJ extract and its fractions. Taken together, these results suggest that TJ extract could be a potential anti-inflammatory ingredient to inhibit UVB-induced inflammation in skin.

Effects of Herbal Medicine Complex on Skin Inflammation and Atopic Dermatitis (한방 복합물이 피부 염증 및 아토피 피부염에 미치는 영향)

  • Ji-Hee, Choi;In-Hwan, Joo;Jong-Min, Park;Dong-Hee, Kim
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.5
    • /
    • pp.187-192
    • /
    • 2022
  • The purpose of this study is to examine the effect of herbal medicine complex (HMC) containing Camellia sinensis L., Duchoesna chrysantha, Houttuynia cordata Thunberg, Poncirus trifoliata Rafinesque on skin inflammation and atopic dermatitis. First, we examined the anti-inflammatory effect of HMC in TNF-α induced human keratinocytes (HaCaT cell). Real-time PCR and western blotting were performed to evaluate the expression of inflammatory cytokines (e.g., iNOS, COX-2, IL-6, IL-8) mRNA and protein. Four-weeks old male NC/Nga mice were treated with 1% 2,4-dinitrochlorobenzene (DNCB) solution and used as an atopic dermatitis mice model. And, HMC (200 mg/kg or 400 mg/kg) was administered directly into the stomach of mice for 4 weeks, and blood or serum analysis, tissue staining were performed after oral gavage. As a result HMC inhibited the mRNA expression of iNOS, COX-2, IL-6, and IL-8, which had been increased by TNF-α in HaCaT cells. In addition, the protein expression was also significantly suppressed in the same way as the mRNA expression results. The in vivo experiment results showed that, HMC administration reduced thickening of the epidermis and infiltration of eosinophil into the skin stratum basale compared to DNCB treatment. In addition, HMC administration significantly reduced the inflammatory cytokines (IL-4, IL-5, IL-6, and IL-13) production and immunocyte (white blood cell, lymphocyte, neutrophil, and eosinophil) count compared to DNCB treatment. Moreover, the serum IgE and histamine level was decreased by HMC administration. These results suggest that HMC can be used as effective herbal medicine extract for skin inflammation and atopic dermatitis. And this study may contribute to the development of the herbal medicine-based drug for the treatment of skin inflammation and atopic dermatitis.

Overexpression of KAI1 Protein in Diabetic Skin Tissues

  • Cho, Moon Kyun;Kwon, Sun Bum;Kim, Chul Han;Lee, Yoon-Jin;Nam, Hae-Seon;Lee, Sang-Han
    • Archives of Plastic Surgery
    • /
    • v.41 no.3
    • /
    • pp.248-252
    • /
    • 2014
  • Background Patients with diabetes mellitus often have a difficult life, suffering from foot ulceration or amputation. Diabetes is characterized by chronic inflammation, and one of the features of inflammation is hypoxia. Recently, it has been reported that KAI1 is a hypoxia target gene. There is no published research on hypoxia-related KAI1 protein levels in human diabetic skin. Therefore, we have investigated the expression of KAI1 protein in diabetic skin tissue in vivo. Methods The expression of KAI1 protein was evaluated by western blotting in 6 diabetic skin tissue samples and 6 normal skin samples. Immunohistochemical staining was carried out to identify KAI1 expression. Results The western blotting revealed significantly increased expression of the KAI1 protein in diabetic skin tissues as compared to normal skin tissues. Immunohistochemical examination demonstrated that KAI1 was expressed in all diabetic skin tissues with moderate-to-strong positivity and weakly expressed in normal skin tissues. Conclusions Our data suggest that a high expression of the KAI1 protein can be observed in diabetic skin tissue. To the best of our knowledge, this is the first report suggesting that KAI1 protein expression in diabetic skin tissues may be associated with chronic inflammatory states and hypoxia.

Pear pomace alleviated atopic dermatitis in NC/Nga mice and inhibited LPS-induced inflammation in RAW 264.7 macrophages

  • You, Mikyoung;Wang, Ziyun;Kim, Hwa-Jin;Lee, Young-Hyun;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.577-588
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Poorly regulated inflammation is believed to be the most predominant factor that can result in a wide scope of diseases including atopic dermatitis (AD). Despite many studies on the effect of pear pomace in obesity-related disorders including dysregulated gut microbiota, the protective effect of pear pomace in AD is still unknown. This study aimed to evaluate the effect of pear pomace ethanol extract (PPE) on AD by inhibiting inflammation. MATERIALS/METHODS: In the in vivo experiment, 2, 4-dinitrochlorobenzene (DNCB) was applied to NC/Nga mice to induce AD-like skin lesions. After the induction, PPE was administered daily by oral gavage for 4 weeks. The clinical severity score, serum IgE levels, spleen weight, histological changes in dorsal skin, and inflammation-related proteins were measured. In the cell study, RAW 264.7 cells were pretreated with PPE before stimulation with lipopolysaccharide (LPS). Nitrite oxide (NO) production and nuclear factor kappa B (NF-𝛋B) protein expression were detected. RESULTS: Compared to the AD control (AD-C) group, IgE levels were dramatically decreased via PPE treatment. PPE significantly reduced scratching behavior, improved skin symptoms, and decreased ear thickness compared to the AD-C group. In addition, PPE inhibited the DNCB-induced expression of inducible nitrite oxide synthase (iNOS), the receptor for advanced glycation end products, extracellular signal-regulated kinase (ERK) 1/2, and NF-𝛋B. PPE inhibited the LPS-induced overproduction of NO and the enhanced expression of iNOS and cyclooxygenase-2. Moreover, the phosphorylation of ERK1/2 and NF-𝛋B in RAW 264.7 cells was suppressed by PPE. CONCLUSIONS: These results suggest that PPE could be explored as a therapeutic agent to prevent AD.