• Title/Summary/Keyword: Skin Color Model

Search Result 168, Processing Time 0.032 seconds

Integrated 3D Skin Color Model for Robust Skin Color Detection of Various Races (강건한 다인종 얼굴 검출을 위한 통합 3D 피부색 모델)

  • Park, Gyeong-Mi;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.1-12
    • /
    • 2009
  • The correct detection of skin color is an important preliminary process in fields of face detection and human motion analysis. It is generally performed by three steps: transforming the pixel color to a non-RGB color space, dropping the illuminance component of skin color, and classifying the pixels by the skin color distribution model. Skin detection depends on by various factors such as color space, presence of the illumination, skin modeling method. In this paper we propose a 3d skin color model that can segment pixels with several ethnic skin color from images with various illumination condition and complicated backgrounds. This proposed skin color model are formed with each components(Y, Cb, Cr) which transform pixel color to YCbCr color space. In order to segment the skin color of several ethnic groups together, we first create the skin color model of each ethnic group, and then merge the skin color model using its skin color probability. Further, proposed model makes several steps of skin color areas that can help to classify proper skin color areas using small training data.

2-Stage Adaptive Skin Color Model for Effective Skin Color Segmentation in a Single Image (단일 영상에서 효과적인 피부색 검출을 위한 2단계 적응적 피부색 모델)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.193-196
    • /
    • 2009
  • Most of studies adopt a fixed skin color model to segment skin color region in a single image. The methods, however, result in low detection rates or high false positive error rates since the distribution of skin color is varies depending on the characteristics of input image. For the effective skin color segmentation, therefore, we need a adaptive skin color model which changes the model depending on the color distribution of input image. In this paper, we propose a novel adaptive skin color segmentation algorithm consisting of 2 stages which results in both high detection rate and low false positive error rate.

  • PDF

Efficient Face Detection based on Skin Color Model (피부색 모델 기반의 효과적인 얼굴 검출 연구)

  • Baek, Young-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.38-43
    • /
    • 2008
  • Skin color information is an important feature for face region detection in color images. This can detect face region using statistical skin color model who is created from skin color information. However, due to the including of different race of people's skin color points, this general statistical model is not accurate enough to detect each specific image as we expected. This paper proposes method to detect correctly face region in various color image that other complexion part is included. In this method set face candidate region applying complexion Gausian distribution based on YCbCr skin color model and applied mathematical morphology to remove noise part and part except face region in color image. And achieved correct face region detection because using Haar-like feature. This approach is capable to distinguish face region from extremely similar skin colors, such as neck skin color or am skin color. Experimental results show that our method can effectively improve face detection results.

Skin Color Region Segmentation using classified 3D skin (계층화된 3차원 피부색 모델을 이용한 피부색 분할)

  • Park, Gyeong-Mi;Yoon, Ga-Rim;Kim, Young-Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1809-1818
    • /
    • 2010
  • In order to detect the skin color area from input images, many prior researches have divided an image into the pixels having a skin color and the other pixels. In a still image or videos, it is very difficult to exactly extract the skin pixels because lighting condition and makeup generate a various variations of skin color. In this thesis, we propose a method that improves its performance using hierarchical merging of 3D skin color model and context informations for the images having various difficulties. We first make 3D color histogram distributions using skin color pixels from many YCbCr color images and then divide the color space into 3 layers including skin color region(Skin), non-skin color region(Non-skin), skin color candidate region (Skinness). When we segment the skin color region from an image, skin color pixel and non-skin color pixels are determined to skin region and non-skin region respectively. If a pixel is belong to Skinness color region, the pixels are divided into skin region or non-skin region according to the context information of its neighbors. Our proposed method can help to efficiently segment the skin color regions from images having many distorted skin colors and similar skin colors.

Skin Segmentation Using YUV and RGB Color Spaces

  • Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.283-299
    • /
    • 2014
  • Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

Skin Region Extraction Using Color Information and Skin-Color Model (컬러 정보와 피부색 모델을 이용한 피부 영역 검출)

  • Park, Sung-Wook;Park, Jong-Kwan;Park, Jong-Wook
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.60-67
    • /
    • 2008
  • Skin color is a very important information for an automatic face recognition. In this paper, we proposed a skin region extraction method using color information and skin color model. We use the adaptive lighting compensation technique for improved performance of skin region extraction. Also, using an preprocessing filter, normally large areas of easily distinct non skin pixels, are eliminated from further processing. And we use the modified ST color space, where undesired effects are reduced and the skin color distribution fits better than others color space. Experimental results show that the proposed method has better performance than the conventional methods, and reduces processing time by $35{\sim}40%$ on average.

Driver face localization using morphological analysis and multi-layer preceptron as a skin-color model (형태분석과 피부색모델을 다층 퍼셉트론으로 사용한 운전자 얼굴추출 기법)

  • Lee, Jong-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.249-254
    • /
    • 2013
  • In the area of computer vision, face recognition is being intensively researched. It is generally known that before a face is recognized it must be localized. Skin-color information is an important feature to segment skin-color regions. To extract skin-color regions the skin-color model based on multi-layer perceptron has been proposed. Extracted regions are analyzed to emphasize ellipsoidal regions. The results from this study show good accuracy for our vehicle driver face detection system.

A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning (딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구)

  • Jeong, Minuk;Kim, Hyeonji;Gwak, Chaewon;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

Design and embodiment about pulse modeling of light investigation for disease treatment by skin color (피부색에 따른 병변치료를 위한 광조사펄스모델링에 대한 설계 및 구현)

  • Kim, Whi-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.563-572
    • /
    • 2006
  • Advantage that light transmission treatment way of most suitable through skin can investigate light directly in part ar there is difference in ability photoelectricity month by diverse complexion of horn character department which is branch or head of a family outside part of skin and treatment according to various patient can be inappropriate. By result that this research uses color information after search each color ingredient that ingredient of HIS and YIQ that use method, color information to use skin impedance way and color information through skin area ion and difference video to do fixed measuring by light investigation way by skin impedance corresponds to skin color in an experiment though is most universal result according to patient's skin model area detection each single person's skin model through videotex automatically create and because measuring, investigate skin color, energy, wave length, approximately, transmission time, model of most suitable that draw pulse delay and so on and want and special quality, and saved standard of disease treatment pulse modeling by skin impedance, and design and manufacture light investigation pulse modeling system of most suitable by skin subordinate, and constructed suitable treatment pulse database by skin color.

  • PDF