• Title/Summary/Keyword: Skid plate

Search Result 5, Processing Time 0.024 seconds

Repetitive Compensation Control for AGC System By Using Pre-Pass Rolling Data

  • Kim, Hwan-Seong;Park, Jin-Seon;Lee, Sang-Dol;Lee, Keum-Jae;Park, Sung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.150.5-150
    • /
    • 2001
  • This paper deals with a modified repetitive control method for compensating automatic gauge control (AGC) to reduce the effect of skid mark which directly influence the quality of products in plate mill process. Since the skid mark on the plate have thermal difference, it makes a different stretching rate and deflection of thickness. Firstly, the (AGC) system and the plate mill process are described by considering function in each control levels. The skid mark of the plate in practical control fields is shown. Also, its frequency variation is given by on-line FFT analysis method. Secondly, a key idea of the modified repetitive control method with time varying period disturbance is represented and compared with standard repetitive control method. Lastly, in simulation ...

  • PDF

A Study on the Design and Performance of a Prototype Pumping Skid for Resonant Frequency Control in the PEFP DTL (PEFP DTL 가속장치의 공진주파수 제어를 위한 펌프장치의 설계 및 성능에 관한 연구)

  • Kim, Kyung-Ryul;Park, Jun;Kim, Hyung-Gyun;Kim, Hee-Sub;Hwang, Woon-Ha;Yoon, Jong-Cheol;Lee, Mong-Su;Cho, En-Byul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2064-2069
    • /
    • 2008
  • The Resonance Control Cooling System (RCCS) prototype installed in KAERI site has been designed to control the resonant frequency of the normal conducting drift tube linac (DTL) for the Proton Engineering Frontier Project (PEFP). The RCCS water pumping skid is composed of two channels as a by-passing the cooling water and a plate heat exchanger. The required temperature can be achieved by mixing both channels in order to control its the resonant frequency at 350 MHz. The temperature controlled water pumping skid operates in combination with the Low Level Radio Frequency (LLRF) system. We have discussed the design, modeling with each components, control scheme, fabrication and test results of the water pumping skid for resonant frequency control of the DTL cavity. In conclusion, the fabricated RCCS prototype through the optimization of modeling has corresponded with the design requirement and concept.

  • PDF

Development of Paint-free Metallic Plastic Material for Automotive Parts (자동차 부품용 무도장 메탈릭 플라스틱 소재 개발)

  • Choi, Min Jin;Cho, Jeong-Min;Choi, Young Ho;Choi, Min Ho;Lee, Choon Soo;Sung, Han Ki;Lee, Kyoung Sil;Park, Ki Hun;Hwang, Se Jong
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.295-299
    • /
    • 2022
  • In this paper, paint-free metallic plastic material, polypropylene (PP) and acrylonitrile styrene acrylate (ASA) materials were investigated on the applications for bumper skid plate and outside mirror housing parts. In order to maximize metallic effect, type, size and content of aluminum pigment were optimized based on flop index. Hybrid aluminum pigments with different aspect ratios were used to conceal weld lines. By controlling the fluidity of the material, the flow mark problem, generated on the surface of the part, was resolved. We also investigated the surface defects of flow and weld lines by using the developed modeling and simulation.

Comparative Study on the Weldability of Different Shipbuilding Steels

  • Laitinen, R.;Porter, D.;Dahmen, M.;Kaierle, S.;Poprawe, R.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.7-13
    • /
    • 2002
  • A comparison of the welding performance of ship hull structural steels has been made. The weldability of steels especially designed for laser processing was compared to that of conventional hull and structural steels with plate thicknesses up to 12 mm. Autogenous laser beam welding was used to weld butt joints as well as skid and stake welded T-joints. The welds were assessed in accordance with the document "The Classification Societies" Requirements for Approval of $CO_2$ Laser Welding Procedures" Small imperfections in the weld only grew slightly in root bend tests and they only had a minor influence on the fatigue properties of laser fillet welded joints. In Charpy impact tests, the 27 J transition temperature of the weld metal and HAZ ranged from below -60 to $-50^{\circ}C$. The amount of martensite in the weld metal depended on the carbon equivalent of the steel with the highest amounts and highest hardness levels in conventional EH 36 (389 HV 5). Thermomechanically rolled steels contained less martensite and showed a correspondingly lower maximum hardness.ximum hardness.

  • PDF

COMPARATIVE STUDY ON THE WELDABILITY OF DIFFERENT SHIPBUILDING STEELS

  • Laitinen, R.;Porter, D.;Dahmen, M.;Kaierle, S.;Poprawe, R.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.222-228
    • /
    • 2002
  • A comparison of the welding performance of ship hull structural steels has been made. The weldability of steels especially designed for laser processing was compared to that of conventional hull and structural steels with plate thicknesses up to 12 mm. Autogenous laser beam welding was used to weld butt joints as well as skid and stake welded T-joints. The welds were assessed in accordance with the document "The Classification Societies′ Requirements for Approval of $CO_2$ Laser Welding Procedures". Small imperfections in the weld only grew slightly in root bend tests and they only had a minor influence on the fatigue properties of laser fillet welded joints. In Charpy impact tests, the 27 J transition temperature of the weld metal and HAZ ranged from below -60 to -5$0^{\circ}C$. The amount of martensite in the weld metal depended on the carbon equivalent of the steel with the highest amounts and highest hardness levels in conventional EH 36 (389 HV 5). Thermomechanically rolled steels contained less martensite and showed a correspondingly lower maximum hardness.

  • PDF