• 제목/요약/키워드: Sketch Image to Code

검색결과 3건 처리시간 0.015초

심층신경망 기반의 객체 검출 방식을 활용한 모바일 화면의 자동 프로그래밍에 관한 연구 (Automatic Mobile Screen Translation Using Object Detection Approach Based on Deep Neural Networks)

  • 윤영선;박지수;정진만;은성배;차신;소선섭
    • 한국멀티미디어학회논문지
    • /
    • 제21권11호
    • /
    • pp.1305-1316
    • /
    • 2018
  • Graphical user interface(GUI) has a very important role to interact with software users. However, designing and coding of GUI are tedious and pain taking processes. In many studies, the researchers are trying to convert GUI elements or widgets to code or describe formally their structures by help of domain knowledge of stochastic methods. In this paper, we propose the GUI elements detection approach based on object detection strategy using deep neural networks(DNN). Object detection with DNN is the approach that integrates localization and classification techniques. From the experimental result, if we selected the appropriate object detection model, the results can be used for automatic code generation from the sketch or capture images. The successful GUI elements detection can describe the objects as hierarchical structures of elements and transform their information to appropriate code by object description translator that will be studied at future.

Sketch Recognition Using LSTM with Attention Mechanism and Minimum Cost Flow Algorithm

  • Nguyen-Xuan, Bac;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제15권4호
    • /
    • pp.8-15
    • /
    • 2019
  • This paper presents a solution of the 'Quick, Draw! Doodle Recognition Challenge' hosted by Google. Doodles are drawings comprised of concrete representational meaning or abstract lines creatively expressed by individuals. In this challenge, a doodle is presented as a sequence of sketches. From the view of at the sketch level, to learn the pattern of strokes representing a doodle, we propose a sequential model stacked with multiple convolution layers and Long Short-Term Memory (LSTM) cells following the attention mechanism [15]. From the view at the image level, we use multiple models pre-trained on ImageNet to recognize the doodle. Finally, an ensemble and a post-processing method using the minimum cost flow algorithm are introduced to combine multiple models in achieving better results. In this challenge, our solutions garnered 11th place among 1,316 teams. Our performance was 0.95037 MAP@3, only 0.4% lower than the winner. It demonstrates that our method is very competitive. The source code for this competition is published at: https://github.com/ngxbac/Kaggle-QuickDraw.

심볼마커를 사용한 딥러닝 기반 모바일 응용 UI 요소 인식 (UI Elements Identification for Mobile Applications based on Deep Learning using Symbol Marker)

  • 박지수;정진만;은성배;윤영선
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.89-95
    • /
    • 2020
  • 최근 딥러닝을 사용하여 스케치이미지에 있는 GUI(Graphical User Interface) 요소를 인식하여 어플리케이션 구현에 필요한 코드를 자동 생성하는 연구 등이 있다. UI/UX 디자이너는 모바일 응용 프로그램 개발 시 스토리보드를 개발자와의 의사소통을 돕는 도구로 사용하나 모호한 위젯에 대해서는 UI/UX 디자이너의 의도와 다르게 구현되는 경우가 종종 발생한다. 본 논문에서는 DNN(Deep Neural Network) 기반의 GUI 요소 식별의 정확성을 높이기 위해 심볼마커를 사용하는 자동 GUI 요소 인식 기법을 제안한다. 심볼마커의 성능평가를 위해 심볼마커의 유무에 따라 실험을 진행하여 정확도를 평가하였고, 정확도 개선을 위해 원형과 괄호형으로 나누어 심볼마커 모양에 따른 결과를 분석하였다. 심볼마커를 사용한다면 개발자에게 정확한 의사 전달이 가능해져 피드백이 줄면서 시간과 비용이 감소하고 스케치이미지의 UI 요소 오탐률을 줄이고 정확성이 향상될 것으로 기대한다.