• Title/Summary/Keyword: Skeletal muscle atrophy

Search Result 88, Processing Time 0.029 seconds

IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1-/- Mice Mediated by miR-33

  • Tang, Chen-Yi;Man, Xiao-Fei;Guo, Yue;Tang, Hao-Neng;Tang, Jun;Zhou, Ci-La;Tan, Shu-Wen;Wang, Min;Zhou, Hou-De
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse ($Irs-1^{-/-}$) with growth retardation and subcutaneous adipocyte atrophy. $Irs-1^{-/-}$ mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of $Irs-1^{-/-}$ mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of $Irs-1^{-/-}$ mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.

Effects of oxypeucedanin hydrate isolated from Angelica dahurica on myoblast differentiation in association with mitochondrial function (백지에서 추출한 oxypeucedanin hydrate의 미토콘드리아 기능 관련 근생성 효과)

  • Eun-Ju Song;Ji-Won Heo;Jee Hee Jang;Yoon-Ju Kwon;Yun Hee Jeong;Min Jung Kim;Sung-Eun Kim
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.53-64
    • /
    • 2024
  • Purpose: Mitochondria play a crucial role in preserving skeletal muscle mass, and damage to mitochondria leads to muscle mass loss. This study investigated the effects of oxypeucedanin hydrate, a furanocoumarin isolated from Angelica dahurica radix, on myogenesis and mitochondrial function in vitro and in zebrafish models. Methods: C2C12 myotubes cultured in media containing 0.1, 1, 10, or 100 ng/mL oxypeucedanin hydrate were immunostained with myosin heavy chain (MHC), and then multinucleated MHC-positive cells were counted. The expressions of markers related to muscle differentiation, muscle protein degradation, and mitochondrial function were determined by quantitative reverse transcription polymerase chain reaction. To investigate the effects of oxypeucedanin hydrate on mitochondrial dysfunction, Tg(Xla.Eef1a1:mito-EGFP) zebrafish embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without oxypeucedanin hydrate and analyzed for mito-EGFP intensity and mitochondrial length. Results: Oxypeucedanin hydrate significantly increased MHC-positive multinucleated myotubes (≥ 3 nuclei) and increased the expression of the myogenic marker myosin heavy chain 4. However, it decreased the expressions of muscle-specific RING finger protein 1 and muscle atrophy f-box (markers of muscle protein degradation). Furthermore, oxypeucedanin hydrate enhanced the expressions of markers of mitochondrial biogenesis (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, transcription factor a mitochondrial, succinate dehydrogenase complex flavoprotein subunit A, and cytochrome c oxidase subunit 1) and mitochondrial fusion (optic atrophy 1). However, it reduced the expression of dynamin-related protein 1 (a mitochondrial fission regulator). Consistently, oxypeucedanin hydrate reduced FOLFIRI-induced mitochondrial dysfunction in the skeletal muscles of zebrafish embryos. Conclusion: The study indicates that oxypeucedanin hydrate promotes myogenesis by improving mitochondrial function, and thus, suggests oxypeucedanin hydrate has potential use as a nutritional supplement that improves muscle mass and function.

Sarcocystosis among Wild Captive and Zoo Animals in Malaysia

  • Latif, Baha;Vellayan, Subramaniam;Omar, Effat;Abdullah, Suliman;Desa, Noryatimah Mat
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.3
    • /
    • pp.213-217
    • /
    • 2010
  • Sarcocystis sp. infection was investigated in 20 necropsied captive wild mammals and 20 birds in 2 petting zoos in Malaysia. The gross post-mortem lesions in mammals showed marbling of the liver with uniform congestion of the intestine, and for birds, there was atrophy of the sternal muscles with hemorrhage and edema of the lungs in 2 birds. Naked eye examination was used for detection of macroscopic sarcocysts, and muscle squash for microscopic type. Only microscopically visible cysts were detected in 8 animals and species identification was not possible. Histological examination of the sections of infected skeletal muscles showed more than 5 sarcocysts in each specimen. No leukocytic infiltration was seen in affected organs. The shape of the cysts was elongated or Circular, and the mean size reached $254{\times}24.5{\mu}m$ and the thickness of the wall up to $2.5{\mu}m$. Two stages were recognized in the cysts, the peripheral metrocytes and large numbers of crescent shaped merozoites. Out of 40 animals examined, 3 mammals and 5 birds were positive (20%). The infection rate was 15% and 25% in mammals and birds, respectively. Regarding the organs, the infection rate was 50% in the skeletal muscles followed by tongue and heart (37.5%), diaphragm (25%), and esophagus (12.5%). Further ultrastructural studies are required to identify the species of Sarcocystis that infect captive wild animals and their possible role in zoonosis.

Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation

  • Go, Ga-Yeon;Jo, Ayoung;Seo, Dong-Wan;Kim, Woo-Young;Kim, Yong Kee;So, Eui-Young;Chen, Qian;Kang, Jong-Sun;Bae, Gyu-Un;Lee, Sang-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.435-441
    • /
    • 2020
  • Background: As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. Methods: C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. Results: Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. Conclusion: Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.

Ursolic acid in health and disease

  • Seo, Dae Yun;Lee, Sung Ryul;Heo, Jun-Won;No, Mi-Hyun;Rhee, Byoung Doo;Ko, Kyung Soo;Kwak, Hyo-Bum;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.235-248
    • /
    • 2018
  • Ursolic acid (UA) is a natural triterpene compound found in various fruits and vegetables. There is a growing interest in UA because of its beneficial effects, which include anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects. It exerts these effects in various tissues and organs: by suppressing nuclear factor-kappa B signaling in cancer cells, improving insulin signaling in adipose tissues, reducing the expression of markers of cardiac damage in the heart, decreasing inflammation and increasing the level of anti-oxidants in the brain, reducing apoptotic signaling and the level of oxidants in the liver, and reducing atrophy and increasing the expression levels of adenosine monophosphate-activated protein kinase and irisin in skeletal muscles. Moreover, UA can be used as an alternative medicine for the treatment and prevention of cancer, obesity/diabetes, cardiovascular disease, brain disease, liver disease, and muscle wasting (sarcopenia). In this review, we have summarized recent data on the beneficial effects and possible uses of UA in health and disease managements.

Single and 28-day repeated dose toxicity studies of botulinum toxin type A in mice and rats (마우스 및 랫드에서 botulinum toxin type A의 단회 및 28일 반복투여 독성시험)

  • Jeon, Tae-Won;Kim, Ji-Young;Hyun, Sun-Hee;Kim, Nam-Hee;Lee, Sang-Kyu;Kim, Chun-Hwa;Woo, Hee-Dong;Yang, Gi-Hyeok;Jung, Hyun-Ho;Jeong, Tae-Cheon
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.57-66
    • /
    • 2003
  • Single and 28-day repeated dose toxicity studies of botulimnn toxin type A were carried out in ICR mice and Sprague-Dawley rats, respectively. In the single dose toxicity study, botulinwn toxin was injected intraperitoneally to male and female mice at a single dose of 40, 59, 89 133 and 200 ng/10 ml saline/kg. All animals died from 59 ng/kg group. Some clinical signs, such as decrease in locomotor activity, dyspnea, prone position and ptosis, were observed in most of both sexes from 59 ng/kg group, but no signs were seen in all animals at 40 ng/kg group. The results showed that the median lethal dose of botulinum toxin might be in the range of 40-59 ng/kg in both sexes. In the repeated dose toxicity study, the test material was administered intradermally for 28 days at doses of 0 (vehicle-treated control), 1.25, 2.5, 5.0 and $10.0ng/head/50{\mu}{\ell}$ saline in male and female rats. No test material-related changes were noted in survivals, clinical signs, food and water consumptions and gross finding in any group. Botulinum toxin treatment significantly decreased the body weight gain rate in male of 5.0 ng/head group and over and in female of 10.0 ng/head group compared to vehicle-treated control. One or more relative organ weights (i.e., spleen, thymus, liver and kidney) were increased significantly from 5.0 ng/head group compared to vehicle-treated control in both sexes. Serum biochemistry revealed increases in aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine phosphokinase, total protein and albumin in male, and increases in AST and ALT and decreases in $K^+$ and $Cl^-$ in female without dose-pendent manners. In the histopathological study, physical stimulation by needle caused slight inflammations of dennis. In addition, botulinum toxin treatment induced denervation of nerve cell and disuse of muscle, resulting in atrophy of skeletal muscle in both sexes from 2.5 ng/head group. When the antibodies to toxin were determined in all animals, a significant increase in serum antibodies was observed from 5.0 ng/head group. The results showed that the NOAEL of botulinum toxin might be 1.25 ng/head for 28-day repeated dose toxicity in rats.

Protective Effects of Medicinal Herbal Mixture (HME) through Akt/FoxO3 Signal Regulation in Oxidative Damaged C2C12 Myotubes (C2C12 myotube의 산화적 손상에 대한 혼합 한약재 추출물(HME)의 Akt/FoxO3 신호 조절을 통한 보호 효과)

  • Kim, So Young;Choi, Moon-Yeol;Lee, Un Tak;Choo, Sung Tae;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.37 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • Objectives : In this study, we investigated the synergistic protective effects of medicinal herbal mixture (HME) including Mori Ramulus (MR), Acanthopanacis Cortex (AC), Eucommiae Cortex (EC), and Black soybean (BS) in C2C12 cells, mouse myoblasts. Methods : Effects of HME on cell viability of C2C12 myoblasts were monitored by MTT assay. Anti-atrophic activity of HME was determined in myoblasts and myotubes under oxidative stress by H2O2. C2C12 myoblasts were differentiated into myotubes in a medium containing 2% horse serum for 6 days. After that, we measured that expression of MyoD and myogenine, the myogenic regulatory factors, to identify the mechanism of inhibiting muscle atophy after HME treatment. In addition, suppression of phosphorylation of Akt, FoxO3a and MARF-1, transcription factors of degradation proteins were analyzed via western blotting. Results : As a result of MTT, HME there was no show cytotoxicity up to a concentration of 1 mg/ml. The cytoprotective effects on oxidative stressed myoblast and myotube was better in HME extract than those of MR, AC, EU, and BS, respectively. HME treatment in Myotube induced by oxidative stress after H2O2 treatment increased Myo D, Myogenine activation, and Akt, FoxO3a phosphorylation and decreased expression of MuRF-1. As the results, HME has synergistic effects on protection against proteolysis of C2C12 myotubes through activation of the Akt signaling pathway under oxidative stress. Conclusions : These results suggest that HME may also be useful as a preventing and treating material for skeletal muscle atrophy caused by age-related diseases.

Study of 4 Cases with Changes of Unified Parkinson's Disease Rating Scale, Heart Rate Variability and Quality of Life in Parkinson's Disease Patients through Whole Body Gi-Hyeol Therapy (전신기혈요법 치료를 통해 Unified Parkinson's Disease Rating Scale, Heart Rate Variability 및 삶의 질이 변화된 파킨슨 환자 4례에 대한 증례보고)

  • Mok, Seo-Hee;Lee, Ji-Won;Lee, Tae-Jong;Seo, Jung-Bok;Kim, Kyoung-Ah;Kim, Joe-Young;Park, Byung-Jun;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.2
    • /
    • pp.71-80
    • /
    • 2021
  • Parkinson's disease is one of the typical neurodegenerative disease and it is caused by the destruction of substantia nigra in brain leading to lack of dopamine secretion, and it presents 4 major motor symptoms such as tremor, bradykinesia, stiffness, postural instability. Furthermore, it causes many non-motor symptoms such as anosmia, REM sleep conduct disorder, orthostatic hypotension, dementia and autonomic ataxia such as lack of adjusting blood pressure, hyperhydrosis, constipation. Dopaminergic therapy is the most commonly used strategy, but long term treatment of levodopa induce various adverse effects. Thus, many people are focusing on new therapies other than established therapies, and there are many tries and approaches with paradigm shift. Our medical team was able to get 4 cases of PD patients who are hospitalized in our hospital, treated by Whole Body Gi-Hyeol Therapy consisting of acupuncture therapy, herbal therapy, and mental therapy, and their conditions improved in perspective of Unified Parkinson's Disease Rating Scale(UPDRS), Heart Rate Variability(HRV), and Quality of life. Among all 4 cases, UPDRS score and quality of life score is gotton better, and among 2 cases SDNN, RMS-SD, TP, LF, HF scores are finely increased. And PDQ-39 score which shows quality of life is also improved. However, in spite of these improvements and positive results, there were no meaningful improvement in a hurt from a fall which is important to the aged, muscular atrophy which causes bone fracture and SMI(Skeletal Muscle Mass Index) which is indicator of osteoporosis. Thus, supplementary treatment about Whole Body Gi-Hyeol Therapy such as more active nutrition intervention, safe and effective kinesitherapy is needed, and from now on continuous case reports and systematic clinical research which has control group must be carried out.