• Title/Summary/Keyword: Skeletal mechanism

Search Result 176, Processing Time 0.026 seconds

Autonomic and Skeletal Muscle Response to Non-electrical Cutaneous Stimulation (비 전기적 자극에 대한 자율신경계통과 골격근의 반응)

  • Kim, In-Hyun
    • The Korean Journal of Pain
    • /
    • v.7 no.2
    • /
    • pp.307-313
    • /
    • 1994
  • Cutaneous stimulation has had a long history as a method of pain control. While there is general agreement that modern techniques such as electrical stimulation and massage often provide relief from acute pain and may in some cases significantly affect chronic pain, the mechanism by which these techniques affect pain remain unclear. Significant attention has been focused on the effects of stimulation on the autonomic nervous system(ANS) along with the increasing evidence of important ANS modulation of nociceptive activity throughout the pain pathway. However, inconsistent results on the presence and direction of ANS changes from cutaneous stimulation characterize the recent literature. The present study investigated a non-electrical cutaneous stimulation device, the Dermapoints massage roller, as well as an active placebo massage. The results indicate that the Dermapoints massage roller has both general effects associated with simple skin stimulation (such as increased skin temperature), as well as specific effects from increased stimulation by the tooth design of the roller. These specific effects include decreased muscle tension (at least for some muscle sites) and increased sympathetic activation. The results are consistent with a model of activation of Pacinian receptors as a possible mechanism for the antinociceptive properties of cutaneous stimulation.

  • PDF

Development of Catalytic Characteristics for Enhancement of Iso-Butene Yield in Isomerization of 1-butene (1-butene의 골격 이성질화 반응에 있어서의 Iso-butene 수율 제고를 위한 촉매 특성 개발)

  • Kim, Jin Gul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.191-196
    • /
    • 1997
  • The isothermal reduction on $Pt/MoO_3/SiO_2$ at $50^{\circ}C$ demonstrates that the rate of hydrogen spillover is increased as calciantion temperature increases. That is due to the overlayer formation over the surface of Pt crystallites, investigated by TEM and CO chemisorption. It is known that reaction mechanism of skeletal isomerization of 1-butene into iso-butene is composed of 2 step such as formation of carbonium ion and isomerization of methyl group. It is expected that the increase of i-butene yield after calcination at $250^{\circ}C$ is due to increased rate of hydrogen spillover coming from first, overlayer formation over Pt surface and second, chlorine lessoning from $PtCl_x$ precursor.

  • PDF

New mechanism of thin film growth by charged clusters

  • Hwang, Nong-Moon;Kim, Doh-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.289-294
    • /
    • 1999
  • The charged clusters or particles, which contain hundreds to thousands of atoms or even more, are suggested to from in the gas phase in the thin film processes such as CVD, thermal evaporation, laser ablation, and flame deposition. All of these processes are also phase synthesis of the nanoparticels. Ion-induced or photo-induced nucleation is the main mechanism for the formation of these nanoclusters or nanoparticles in the gas phase. Charge clusters can make a dense film because of its self-organizing characteristics while neutral ones make a porous skeletal structure because of its Brownian coagulation. The charged cluster model can successfully explain the unusual phenomenon of simultaneous deposition and etching taking place in diamond and silicon CVD processes. It also provides a new interpretation on the selective deposition on a conducting material in the CVD process. The epitaxial sticking of the charged clusters on the growing surface is getting difficult as the cluster size increases, resulting in the nanostructure such as cauliflower or granular structures.

  • PDF

Analysis of Gene Expression in Cyclooxygenase-2-Overexpressed Human Osteosarcoma Cell Lines

  • Han, Jeong A.;Kim, Ji-Yeon;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2014
  • Osteosarcoma is the most common primary bone tumor, generally affecting young people. While the etiology of osteosarcoma has been largely unknown, recent studies have suggested that cyclooxygenase-2 (COX-2) plays a critical role in the proliferation, migration, and invasion of osteosarcoma cells. To understand the mechanism of action of COX-2 in the pathogenesis of osteosarcoma, we compared gene expression patterns between three stable COX-2-overexpressing cell lines and three control cell lines derived from U2OS human osteosarcoma cells. The data showed that 56 genes were upregulated, whereas 20 genes were downregulated, in COX-2-overexpressed cell lines, with an average fold-change > 1.5. Among the upregulated genes, COL1A1, COL5A2, FBN1, HOXD10, RUNX2, and TRAPPC2 are involved in bone and skeletal system development, while DDR2, RAC2, RUNX2, and TSPAN31 are involved in the positive regulation of cell proliferation. Among the downregulated genes, HIST1H1D, HIST1H2AI, HIST1H3H, and HIST1H4C are involved in nucleosome assembly and DNA packaging. These results may provide useful information to elucidate the molecular mechanism of the COX-2-mediated malignant phenotype in osteosarcoma.

Design and Control of Anthropomorphic Robot hand (인간형 다지 다관절 로봇 핸드의 개발)

  • Chun, Joo-Young;Choi, Byung-June;Chae, Han-Sang;Moon, Hyung-Pil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.

A development of the automated system for adjusting the 6 D.O.F circular fixator

  • Jung, Sang-Gil;Park, Bum-Seok;Sim, Hyung-Joon;Jang, Jae-Ho;Han, Chang-Soo;Han, Jung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1642-1647
    • /
    • 2004
  • In this article, we present the development of the automated system for adjusting the 6 D.O.F circular fixator. The system includes scheduling software to adjust the Hexapod Circular Fixator (HCF) and an automated strut system with the ability of the multiple synchronized motion. HCF was designed to control a 6 degree-of-freedom Ilizarove fixator and it's mechanism is known as the Stewart Platform. HCF scheduler evaluates each value of altered length of the HCF struts to correct the complex skeletal deformity by using the X-ray data of the patient. The data of HCF scheduler feed into the automated strut system which be able to provide the scheduled adjustment and the automated strut is synchronized by input data.

  • PDF

The Regulatory Domain of Troponin C: To Be Flexible or Not To Be Flexible

  • Gagne, Stephane M.;Sykes, Michael T.;Sykes, Brain D.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.2
    • /
    • pp.131-140
    • /
    • 1998
  • The calcium-induced structural changes in the skeletal muscle regulatory protein troponin C (NTnC) involve a transition from a ‘closed’to an ‘open’structure with the concomitant exposure of a large hydrophobic interaction site for target proteins. Structural studies have served to define this conformational change and elucidate the mechanism of the linkage between calcium binding and the induced structural changes. There are now several structures of NTnC available from both NMR and X-ray crystallography. Comparison of the calcium bound structures reveals differences in the level of opening. We have considered the concept of a flexible open state of NTnC as a possible explanation for this apparent discrepancy. We also present simulations of the closed-to-open transition which are in agreement with the flexibility concept and with experimental energetics data.

  • PDF

Dual function of MG53 in membrane repair and insulin signaling

  • Tan, Tao;Ko, Young-Gyu;Ma, Jianjie
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.414-423
    • /
    • 2016
  • MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine.

Palmar Hand Wound Coverage with the Free Flaps

  • Roh, Si Young;Lee, Kyung Jin;Lee, Dong Chul;Kim, Jin Soo;Yang, Jae-Won
    • Archives of Reconstructive Microsurgery
    • /
    • v.23 no.2
    • /
    • pp.45-50
    • /
    • 2014
  • Palmar soft tissue defects are best reconstructed using a replacement flap of proper size with adequate soft tissue stability for mechanical resistance as well as with protective sensation. Reconstructive approaches are dictated by injury mechanism, defect size and location, and the status of the wound bed and tendino-skeletal structure. While uninjured portions of the hand can be used as a source for local flaps, the use of free flaps allows for maximal access for selection of the most ideal replacement tissue for the defect to be restored as close to the initial state as possible. Here, we review the garden variety of free flaps used in reconstruction of palmar soft tissue defects.

Overview of Mucolipidosis Type II and Mucolipidosis Type III α/β

  • Kim, Su Jin
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • Mucolipidosis type II (MLII; MIM#252500) and type III alpha/beta (MLIIIA; MIM#252600) very rare lysosomal storage disease cause by reduced enzyme activity of GlcNAc-1-phosphotransferase. ML II is caused by a total or near total loss of GlcNAc-1-phosphotransferase activity whether enzymatic activity in patient with ML IIIA is reduced. While ML II and ML III share similar clinical features, including skeletal abnormalities, ML II is the more severe in terms of phenotype. ML III is a much milder disorder, being characterized by latter onset of clinical symptoms and slower progressive course. GlcNAc-1-phosphotransferase is encoded by two genes, GNPTAB and GNPTG, mutations in GNPTAB give rise to ML II or ML IIIA. To date, more than 100 different GNPTAB mutations have been reported, causing either ML II or ML IIIA. Despite development of new diagnostic approach and understanding of disease mechanism, there is no specific treatment available for patients with ML II and ML IIIA yet, only supportive and symptomatic treatment is indicated.