• Title/Summary/Keyword: Skeletal malocclusion

Search Result 404, Processing Time 0.022 seconds

THE EFFECT OF DISTAL MOVEMENT OF UPPER MOLAR USING THE PENDULUM APPLIANCE (Pendulum 장치의 상악대구치의 원심이동에 대한 효과)

  • Lee, Chang-Seop;Kim, Jae-Gwang;Kang, Dug-Il;Song, Kwang-Chul;Jung, Hyun-Ku;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.488-495
    • /
    • 2001
  • Treatment of class II malocclusions require distalization of maxillary molars into class I relationship. Intraarch distal molar movement techniques have recently assumed an important role in young patients. In this study, the dental and skeletal effects of the pendulum appliance were evaluated by means of cephalometric radiographs. The samples were consisted of 19 patients: 11 females and 8 males, mean age $11.68{\pm}1.52$ years. Measurements were obtained from cephalometric prior to and the day of removal of the pendulum appliance. Treatment changes were analyzed. The following results were obtain. 1. The pendulum appliance produced $2.94{\pm}1.54mm$ distal molar movement with a mean intrusion of $1.17{\pm}0.97mm$, mean period $18.13{\pm}7.95$ weeks. 2. The anchor tooth was $1.34{\pm}1.40mm$ forward movement and $0.48{\pm}0.99mm$ extrusion, and labial tilting of incisors. 3. The angle between palatal plane and mandibular plane increased significantly. 4. There was no significant difference in according to 2nd molar position. 5. Total movement was consisted of 74% distal movement of 1st molar and 26% forward movement of the anchor tooth.

  • PDF

Three Dimensional Study on the Postoperative Stability after Advancement of Maxilla Using Le Fort I Osteotomy (Le Fort I 골절단술을 이용한 상악골 전진 후 안정성에 관한 3차원적 연구)

  • Oh, Chul-Jung;Hur, Jung-Woo;Chung, Kwang;Cho, Min-Sung;Jung, Seunggon;Park, Hong-Ju;Oh, Hee-Kyun;Ryu, Sun-Youl;Kook, Min-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Purpose: This study evaluated postoperative maxillary stabilities in patients with skeletal Class III malocclusion who were taken both maxillary advancement surgery and mandibular retrusive surgery, using Le Fort I osteotomy, through three-dimensional computed tomography. Methods: We selected 14 patients who were taken postoperative three-dimensional computerized tomography at the time before surgery, immediately after surgery, six months after surgery among the patients undergone both maxillary advancement surgery using Le Fort I osteotomy and mandibular retrusive surgery using bilateral sagittal split ramus osteotomy. We measured and compared the vertical distance of A-point and posterior nasal spine (PNS), the horizontal distance of A-point and PNS in transverse plane and coronal plane of the three-dimensional reconstructed images, respectively. Results: In transverse plane, the distance difference between immediately after surgery ($S_1$) and immediately before surgery ($S_0$) of A-point was $-0.04{\pm}1.80$ mm, $S_2$ and $S_0$ was $-0.15{\pm}1.69$ mm, and between $S_1$ and $S_2$ was $0.11{\pm}0.58$ mm. There were no significant differences between these data (P>0.05). In transverse plane, the distance between $S_1-S_0$ of PNS was $-3.87{\pm}2.37$ mm, $S_2-S_0$ of PNS was $-3.79{\pm}2.39$ mm, and $S_1-S_2$ of PNS was $-0.08{\pm}0.18$ mm. There were significant differences between these data (P<0.05). In coronal plane, the distance between $S_1-S_0$ of A-point was $3.99{\pm}0.86$ mm, $S_2-S_0$ was $3.57{\pm}1.09$ mm, and $S_1-S_2$ was $0.42{\pm}0.42$ mm. There were significant differences between these data (P<0.05). In coronal plane, the distance between $S_1-S_0$ of PNS was $3.82{\pm}0.96$ mm, $S_2-S_0$ was $3.43{\pm}0.91$ mm, and $S_1S_2$ was $0.39{\pm}0.49$ mm. There were significant differences between these data (P<0.05). In transverse plane, it was estimated that PNS has no statistical postoperative stability in the same direction. In coronal plane, it was estimated that both A-point and PNS had no statistical postoperative stability (P<0.05). Conclusion: Clinically, the operation plan needs to take into account of the maxillary relapse.

SOFT TISSUE PROFILE CHANGE PREDICTION IN MAXILLARY INCISOR RETRACTION BASED ON CEPHALOMETRICS (두부방사선 분석에 의한 상악전치부 후방이동시 연조직 변화 예측에 대한 연구)

  • Choi, Jin-Hee;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.27 no.1
    • /
    • pp.65-78
    • /
    • 1997
  • This study was carried out in order to determine soft tissue response to incisor movement and mandibular repositioning and to determine feasibility of predicting vertical and horizontal changes in soft tissue with hard tissue movement. For this study, cephalometric records of 41 orthodontically treated adult females who had Angle's Class II division 1 malocclusion were selected and stepwise multiple regression analysis was employed. Following conclusions were obtained by analysing the changes of soft tissue and hard tissue before and after treatment. 1. Hard tissue measurements that showed significant changes before and after treatment were horizontal and angular changes of maxillary incisor, horizontal,vertical and angular changes of mandibular incisor, overjet, overbite, interincisal angle, mandibular repositioning, A,B, skeletal convexity and soft tissue measurements that showed significant changes were horizontal, thickness and angular changes of upper lip, horizontal and angular changes of lower lip, interlabial angle, nasolabial angle labiomental angle, Sri, Ss, Si and soft tissue convexity(P<0.05). 2. All Soft tissue measurements changed significantly before and after treatment had between one and four hard tissue independent variables at statistically significant level, indicating that all soft tissue changes were direct relationship with hard tissue changes 3. Ova jet, horizontal change of maxillary incisor, horizontal change of maxillary root apex and horizontal change of pogonion entered into prediction equations most frequentely indicating that they were more significant variables in prediction of vertical and horizontal changes in the soft tissue with treatment, but vertical changes of mandibular incisor not entered any prediction equations, indicating that it was not considered a good predictor for soft tissue changes with maxillary incisor retraction. 4. Horizontal and vertical changes in subnasale were found to have most independent variables, significant at the 0.05 level in prediction-equations(${\Delta}$Sn(H):Ur, Is(H), Pg(H), UIA,${\Delta}$Sn(V): Is(H), Pg(H), overjet, A), indicating that subnasale changes are influenced by complex hard tissue interaction. 5. Multiple correlation coefficient($R^2$) of the soft tissue prediction equations ranges from 0.2-0.6.

  • PDF

EVALUATION OF CONDYLAR POSITION USING COMPUTED TOMOGRAPH FOLLOWING BILATERAL SAGITTAL SPLIT RAMUS OSTEOTOMY (전산화단층촬영법을 이용한 하악 전돌증 환자의 하악지 시상 골절단술후 하악과두 위치변화 분석)

  • Chol, Kang-Young;Lee, Sang-Han
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.4
    • /
    • pp.570-593
    • /
    • 1996
  • This study was intended to perform the influence of condyle positional change after surgical correction of skeletal Class III malocclusion after BSSRO in 20 patients(males 9, females 11) using computed tomogram that were taken in centric occlusion before, immediate, and long term after surgery and lateral cephalogram that were taken in centric occlusion before, 7 days within the period intermaxillary fixation, 24hour after removing intermaxillary fixation and long term after surgery. 1. Mean intercondylar distance was $84.45{\pm}4.01mm$ and horizontal long axis of condylar angle was $11.89{\pm}5.19^{\circ}$on right, $11.65{\pm}2.09^{\circ}$on left side and condylar lateral poles were located about 12mm and medial poles about 7mm from reference line(AA') on the axial tomograph. Mean intercondylar distance was $84.43{\pm}3.96mm$ and vertical axis angle of condylar angle was $78.72{\pm}3.43^{\circ}$on right, $78.09{\pm}6.12^{\circ}$on left. 2. No statistical significance was found on the condylar change(T2C-T1C) but it had definitive increasing tendency. There was significant decreasing of the distance between both condylar pole and the AA'(p<0.05) during the long term(TLC-T2C). 3. On the lateral cephalogram, no statistical significance was found between immediate after surgery and 24 hours after the removing of intermaxillary fixation but only the lower incisor tip moved forward about 0.33mm(p<0.05). Considering individual relapse rate, mean relapse rate was 1.2% on L1, 5.0% on B, 2.0% on Pog, 9.1% on Gn, 10.3% on Me(p<0.05). 4. There was statistical significance on the influence of the mandibular set-back to the total mandibular relapse(p<0.05). 5. There was no statistical significance on the influence of the mandibular set-back(T2-T1) to the condylar change(T2C-T1C), the condylar change(T2C-T1C, TLC-T2C) to the mandibular total relapse, the pre-operative condylar position to the condylar change(T2C-T1C, TLC-T2C), the pre-operative mandibular posture to the condylar change(T2C-T1C, TLC-T2C)(p>0.05). 6. The result of multiple regression analysis on the influence of the pre-operative condylar position to the total mandibular relapse revealed that the more increasing of intercondylar distance and condylar vertical axis angle and decreasing of condyalr head long axis angle, the more increasing of mandibular horizontal relapse(L1,B,Pog,Gn,Me) on the right side condyle. The same result was founded in the case of horizontal relapse(L1,Me) on the left side condyle.(p<0.05). 7. The result of multiple regression analysis on the influence of the pre-operative condylar position to the pre-operative mandibular posture revealed that the more increasing of intercondylar distance and condylar vertical axis angle and decreasing of condylar head long axis angle, the more increasing of mandibular vertical length on the right side condyle. and increasing of vertical lengh & prognathism on the left side condyle(p<0.05). 8. The result of simple regression analysis on the influence of the pre-operative mandibular posture to the mandibular total relapse revealed that the more increasing of prognathism, the more increasing of mandibular total relapse in B and the more increasing of over-jet the more increasing of mandibular total relapse(p<0.05). Consequently, surgical mandibular repositioning was not significantly influenced to the change of condylar position with condylar reposition method.

  • PDF