• Title/Summary/Keyword: Skeletal Muscles

Search Result 323, Processing Time 0.031 seconds

Expression Pattern of Skeletal-Muscle Protein Genes and Cloning of Parvalbumin mRNA in Dark-banded Rockfish (Sebastes inermis) (볼락(Sebastes inermis) 근육단백질 유전자의 성장단계별 발현 양상과 parvalbumin 유전자 클로닝)

  • Jang, Yo-Soon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Differentially Expressed Gene (DEG) was obtained from Differential Display Reverse Transcription (DDRT)-PCR using Annealing Control Primer (ACP) to search and clone genes related to developmental stages of Sebastes inermis. By using 120 ACPs, the nucleotide sequences obtained from 16 DEGs showing higher expression in 6-month-old skeletal muscle than 18-month-old ones and from 22 DEGs displaying stronger expression in 18-month-old than 6-month-old were analyzed and BLAST was conducted. The results identified that DEGs shared 69~95% homology with genes of parvalbumin (PVALB), nucleoside diphosphate kinase (NDK) B, tropomyosin (TPM), troponin I (TnI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), muscle-type creatine kinase (CKM2), small EDRK-rich factor 2 (SERF2), adenosine monophosphate deaminase (AMPD), Trimeric intracellular cation channel type A (TRICA), Rho GTPase-activating protein 15 (ARHGAP15), S-formylglutathione hydrolase (Esterase D; ESD), heat shock protein 70 (hsp70), type 1 collagen alpha 2 (COL1A2), glutathione S-transferase, Mid1-interacting protein 1 (Mid1lip1), myosin light chain 1 (MYL1), sarcoplasmic/endoplasmic reticulum calcium ATPase 1B (SERCA1B), and ferritin heavy subunit (FTH1). Expression pattern by developmental stage of DEG14 and PVALB exhibiting strong expression in 6-month-old skeletal muscle was investigated using real time PCR. Expression was reduced as Sebastes inermis grew. Expression of PVALB gene was extremely low after 6 months of age. Expression of CKM2 showed higher expression in 18-month-old skeletal muscle than in 6-month-old muscles, and increased continuously until 4 years old, after which CKM2 expression became gradually reduced. By analysis of tissue-specific expression patterns of DEG, DEG14 was expressed mainly in skeletal muscle, liver, kidney and spleen tissues, whereas PVALB expression was expressed in skeletal muscle and kidney, but not in liver and spleen tissues. CKM2 was expressed in skeletal muscle, kidney, and spleen tissues, but not in liver tissues. PVALB gene was composed of 110 amino acids, which constituted 659 bp nucleotides. The results reported here demonstrate that the expression patterns of parvalbumin and CKM2 could be used as molecular markers for selecting fishes exhibiting fast growth.

Manipulation of Tissue Energy Metabolism in Meat-Producing Ruminants - Review -

  • Hocquette, J.F.;Ortigues-Marty, Isabelle;Vermorel, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.720-732
    • /
    • 2001
  • Skeletal muscle is of major economic importance since it is finally converted to meat for consumers. The increase in meat production with low costs of production may be achieved by optimizing muscle growth, whereas a high meat quality requires, among other factors, the optimization of intramuscular glycogen and fat stores. Thus, research in energy metabolism aims at controling muscle metabolism, but also liver and adipose tissue metabolism in order to optimize energy partitioning in favour of muscles. Liver is characterized by high anabolic and catabolic rates. Metabolic enzymes are regulated by nutrients through short-term regulation of their activities and long-term regulation of expression of their genes. Consequences of liver metabolic regulation on energy supply to muscles may affect protein deposition (and hence growth) as well as intramuscular energy stores. Adipose tissues are important body reserves of triglycerides, which result from the balance between lipogenesis and lipolysis. Both processes depend on the feeding level and on the nature of nutrients, which indirectly affect energy delivery to muscles. In muscles, the regulation of rate-limiting nutrient transporters, of metabolic enzyme activities and of ATP production, as well as the interactions between nutrients affect free energy availability for muscle growth and modify muscle metabolic characteristics which determine meat quality. The growth of tissues and organs, the number and the characteristics of muscle fibers depend, for a great part, on early events during the fetal life. They include variations in quantitative and qualitative nutrient supply to the fetus, and hence in maternal nutrition. During the postnatal life, muscle growth and characteristics are affected by the age and the genetic type of the animals, the feeding level and the diet composition. The latter determines the nature of available nutrients and the rate of nutrient delivery to tissues, thereby regulating metabolism. Physical activity at pasture also favours the orientation of muscle metabolism, towards the oxidative type. Consequently, breeding systems may be of a great importance during the postnatal life. Research is now directed towards the determination of individual tissue and organ energy requirements, a better knowledge of nutrient partitioning between and within organs and tissues. The discovery of new molecules (e. g. leptin), of new molecular mechanisms and of more powerful techniques (DNA chips) will help to achieve these objectives. The integration of the different levels of knowledge will finally allow scientists to formulate new types of diets adapted to sustain a production of high quality meat with lower costs of production.

Studies on te Myofibrillar Protein from Chicken Muscle -1. Variations in Extractability and Some Biological Activities of Actomyosin with Different Feeding Period- (닭고기의 근원섬유 단백질에 관한 연구 -1. 사양기간(飼養期間)에 따른 Actomyosin의 추출성과 ATPase 활성 비교-)

  • Gong, Yang-Suk;Park, Chang-Sik;Moon, Yoon-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.1
    • /
    • pp.77-81
    • /
    • 1985
  • It was investigated about extractability and biological property(ATPase activity) of actomyosin from skeletal muscle of chi(:ken differed feeding period. The extractabilities of actomyosin from pectoral muscle were increased from 184.5 to 1020.1 mg per 100g muscle as feeding period prolonged from 3 weeks to 8 weeks. In case of leg-muscles, extractability was revealed the similar tendency as pectoral muscles. EDTA ATPase activity of actomyosin in various chicken muscles for 3 weeks feeding was 0.6 Brmole Piimg Protein/min., 0.59 for 6 Iveeks feeding and 0.50 for 8 weeks. The Ma^{+2}$-ATPase of actomyosin in various chicken muscles was showed inverted relationship with ionic strength. EGTA ($125\;{\mu}mole$)inhibited Ma^{+2}$-ATPase activity to below $0.1\;{\mu}mole$ Pi/mg protein/min. regardless the feeding period.

  • PDF

Investigation of Growth Stage Related Genes in Dark-banded Rockfish Sebastes inermis (볼락(Sebastes inermis)의 성장단계별 차등발현 유전자 탐색)

  • Jang, Yo-Soon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.21-29
    • /
    • 2011
  • Expression analysis of development-related genes was conducted using differential screening of 6-month-old [18M(-), 6M-18M] specific and 18-month-old [6M(-), 18M-6M] specific subtracted cDNA libraries constructed by subtractive hybridization using skeletal muscle of 6- and 18-month-old dark-banded rockfish Sebastes inermis. A total 202 cDNA clones displaying different expression levels in each stage were obtained; among them, 32 clones showing up-regulation were finally selected for further expression analysis. We sequenced the clones and analyzed individual sequences. Genes expressed specifically in 6-month-old skeletal muscle were identified as myosin, adenylate kinase, calsequestrin, dystrobrevin beta, and diphosphate kinase-Z1. Genes showing strong expression in 18-month-old rockfish were identified as desmin, TGFBR2 (transforming growth factor-beta receptor), muscle-type creatine kinase, and cathepsin D. Expression of these genes was checked further in 6-18-30-42 month-old dark-banded rock fish. Rapid reduction of expression was observed in dystrobrevin beta and diphosphate kinase. However, expression of creatine kinase (muscle type) and cathepsin D increased as dark-banded rockfish grew, and remained even after 18 months. The results reported here demonstrate that genes related to muscles contract are expressed at an early stage of development, and genes controlling energy in muscles are predominantly expressed at a late developmental stage.

Histopathology and residues in fresh water fish exposed to acute and chronic copper and mercury toxicity

  • Sawsan, H.A.;Amira, H.M.;Mostafa, M.B.;Nashaat, AM.M.
    • Journal of fish pathology
    • /
    • v.30 no.2
    • /
    • pp.115-134
    • /
    • 2017
  • A total number of 668 apparently healthy fish were obtained from farm to study the effect of two heavy metals (Copper and Mercury) on histopathology of liver, kidney, spleen, gills and muscles also residues in muscles. The $LC_{50}$/96 hr. of Cu and Hg were estimated and fish exposed to 1/2 $LC_{50}$ for 7 days and for 1/10 $LC_{50}$ for 8 weeks from each product separately. Histopathological findings in acute and chronic mercuric chloride toxicity revealed degeneration and necrosis in the glomeruli, interstitium tissue and epithelium lining renal tubules. The tubular epithelium became necrotic at several places. Eosinophilic hyaline droplets is exist in the cytoplasm of the necrosed cells. Degenerative changes and hyperactivity in melanomachrophage center was seen in the spleen together with some necrotic areas. Necrosis and aggregation of melanomachrophage were seen in the hepatic cells, Hepatic cells showed vacuolar degeneration in the hepatic cells. Gills showed loss in the lamellae of the filaments associated with edema, inflammatory cells infiltration and haemorrhages in the arch. The sarcoplasm of the bundles of the skeletal muscle showed granular degeneration and focal inflammatory cells infiltration between the hyalinized bundles. Mercury residues obtained from these studies in the acute toxicity were 0.22 ppm/gm in the 2nd day, 0.411 ppm/gm in the $5^{th}$ day ended with 0.96 ppm/gm in the $7^{th}$ day. In chronic toxicity it was 1.1320, 1.7140, 2.3620 and 3.5640 ppm/gm respectively from the $2^{nd}$ to the $8^{th}$ week of exposure. In acute and chronic copper toxicity, there was degenerative changes in renal tubules. Melanophores aggregation in the wall of the blood vessels of the spleen and depletion of some of the melanophores in the melanomachrophage were seen together with necrosis in some areas. Congested Mvs (Micro vessels) and vacuolation of hepatocytes were observed. Some areas of hemorrhage and melanophores vacuolar degeneration in the liver were seen. There was mitosis in some areas with displesia of hepatopancreatic cells and eosinophilic granular cells aggregation. Zymogen granules disappeared and there were dyplastic hepatocytes. Congestion in the blood vessels of the gill filaments, associated with massive number of granular eosinophilic cells infiltration were seen in the base of the filaments. There were sever vacuolization and hyalinization in the skeletal muscle bundles. Detection of residues of copper sulfate revealed increase of the amount of copper measured in ppm/gm comparing to the normal control starting from 0.60 ppm/g in the $2^{nd}$ day, 0.67 ppm/g in the $5^{th}$ day and 0.67 ppm/g in the $7^{th}$ day. Result obtained in chronic copper sulfate toxicity revealed gradual increase of the amount of copper which ranged from 0.18 ppm/g at the $2^{nd}$ week to 0.21 ppm/g in the $8^{th}$ week of exposure.

Development of Descending Thoracic Aortomyoplasty for Cardiac Bioassist (심장보조를 위한 흉부대동맥 근성형술 개발(예비 동물실험))

  • 오중환;박승일;김은기;김영호;류기홍;이상헌;원주호;서재정
    • Journal of Chest Surgery
    • /
    • v.33 no.6
    • /
    • pp.469-475
    • /
    • 2000
  • Background: Thoracic aortomyoplasty is one of the surgical treatment for heart failure and has advantages over artificial heart or intraaortic balloon pumps. It uses autogenous skeletal muscles and solves problems such as energy source. However its use in clinical settings has been limited. This preliminary study was designed to develop surgical technique and to determine the effect of acute descending thoracic aortomyoplsty. Material and Method: Thirteen adult Mongrel dogs were used. The left latissimus dorsi muscle was wrapped around the descending aorta under general anesthesis. Swan-Ganz and microtipped Millar catheter were used for the hemodynamics and endocaridial viability ratio. Data were collected with myostimulator on and off in normal hearts and the ischemic hearts. Result: In normal hearts, the mean aortic diastolic pressure increased from 72$\pm$15mmHg at baseline to 78$\pm$13mmHg with stimulator on. Coronary perfusion pressure increased from 61$\pm$11mmHg to 65$\pm$9mmHg. Diastolic time increased from 0.288$\pm$0.003 msec to 0.290$\pm$0.003msec. Systolic time decreased from 0.164$\pm$0.002msec to 0.160$\pm$0.002 msec. Endocardial viability ratio increased from 1.21$\pm$0.22 to 1.40$\pm$0.18. In ischemic hearts, mean aortic diastolic pressure incrased from 56$\pm$21mmHg at baseline to 61$\pm$15mmHg with stimulator on. Coronary perfusion pressure increased from 48$\pm$17mmHg to 52$\pm$15mmHg. Diastolic time increased from 0.290$\pm$0.003 msec to 0.313$\pm$0.004msec. Systolic time decreased from 0.180$\pm$0.002 msec to 0.177$\pm$0.003 msec. Endovascular viability ratio increased from 0.9$\pm$0.31 to 1.1$\pm$0.31. The limited number of cases ruled out the statistic significance. Conclusion: Descending thoracic aortomyoplasty is a simple operation designed to use patient's own skeletal muscles. It trends to increase diastolic augmentation and coronary perfusion pressure. Modification of surgical technique and stimulator protocol would maximize the effect to assist the heart.

  • PDF

Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling

  • Ryuni Kim;Jee Won Kim;Hyerim Choi;Ji-Eun Oh;Tae Hyun Kim;Ga-Yeon Go;Sang-Jin Lee;Gyu-Un Bae
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.726-734
    • /
    • 2023
  • Background: Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods: To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results: Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion: This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.

The Effect of GaAlAs Laser Irradiation on VEGF Expression in Muscle Contusion of Rats (GaAlAs 레이저 조사가 근타박상이 유발된 흰쥐 골격근내 혈관내피성장인자 발현에 미치는 영향)

  • Kim Souk-Boum;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.16-44
    • /
    • 2003
  • Skeletal muscle regeneration is a vital process for various muscle myopathies and muscular adaptation to physiological overload. Angiogenesis is the key event in the process of muscle regeneration, and vascular endothelial growth factor(VEGF) plays an important role in it. The purpose of this study was to evaluate the effect of GaAlAs(830nm) laser and immunoreactivity of VEGF on angiogenesis after muscle contusion injury. Muscle contusion injury was induced in the triceps surae muscle by dropping a metal bead(31.4g). GaAlAs laser irradiation(power 20 mW, frequency 2000 Hz, treatment time 15 min) was applied directly to the skin of injured muscle daily for seven days. The experimental group I was irradiated immediately by laser after injury, whereas the experimental group II was irradiated after 1 day of injury. The control group was non-irradiated. The results of this study were as follows. 1. In morphological observation, there were no significant changes in experimental and control groups for 7 days. At 3 days, however, the splited muscle fibers were observed in experimental groups, and the muscle atrophy and granular tissue viewed at 7 days in control group. 2. The VEGF was expressed in muscle fiber that located in the interspace between gastrocnemius and soleus muscles. As the time coursed, the immunoreactivity of VEGF also seemed to be strong in the individual muscle fibers. 3. The experimental group I & II showed higher immunoreactivity of VEGF than control group(p<0.05). Then, the experimental group I showed higher than group II especially(p<0.05). These data suggest GaAlAs semiconduct diode laser irradiation(830nm) enhanced angiogenesis in the skeletal muscle induced contusion injury, and immediate laser irradiation after injury promoted the angiogenesis greatly than after 1 day of injury.

  • PDF

Development of Fruit Harvest Basket and Assessment of its Effectiveness

  • Lim, Cheol Min;Chae, Hye Seon;Seo, Min Tae;Lee, Kyung Suk;Kim, Hyo Cher;Kim, Kyung Ran;Kim, Sung Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.313-321
    • /
    • 2014
  • Objective: The purpose of this study is to develop products that prevent muscular skeletal disease of farm workers, which would bring improvement for an efficient harvesting work. Background: A pretest for product development and a survey research was carried out to inspect the problems of current harvesting work procedure. The product was developed and assessed based on ideas to supplement and improve these weak points. Method: A total of twenty men were recruited to evaluate the effects of harvest baskets on the upper-limb muscle activity, working hours. For the usability evaluation, electromyogram and working hours of previous working method (disuse of harvest basket, one-hand carriage of the basket) and new working method with the usage of newly-developed harvest basket was examined. The whole anterior deltoid, biceps brachii and erector spinae on both sides, which make a total of six muscle parts, were used for this experiment. The results were analyzed using ANOVA with muscle activity (%MVC) of each three forms of work and required work time from SPSS 18.0. Results: According to the test result, all muscles did not demonstrate any statistically significant difference, with an exception of the backbone erector (right). The muscle activity of backbone erector (right) in the work method that uses the harvest basket developed in this study was detected to be approximately 23% less than that of the previous working method. Moreover, compared to the previous working method, the required work time decreased to a statistically significant degree. Conclusion: As such, the decrease in the amount of waist muscle usage at harvesting work would enable the prevention of muscular skeletal disease and stabilization of lumbar spine. Application: Which in turn would increase the effectiveness and reduce personnel expense (labor costs) while enhancing productivity with a decreased working hours.

Effects of Squat Exercise Combined with Whole-Body Vibration on the Pulmonary Function and the Quadriceps Femoris Activity of Patients with Severe Chronic Obstructive Pulmonary Disease (전신진동을 결합한 스쿼트운동이 중증 만성폐쇄성폐질환 환자의 폐기능과 넙다리네갈래근 활성도에 미치는 영향)

  • Kang, Jeong-Il;Jeong, Dae-Keun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.121-129
    • /
    • 2020
  • PURPOSE: This study aimed to propose an exercise technique that helps improve the skeletal muscle function while suppressing the symptoms of respiratory distress, by mediating squat exercises in whole-body vibration for patients with severe COPD, and comparing the post intervention pulmonary function and activity of quadriceps. METHODS: Totally, 21 patients with severe COPD were randomly assigned to two groups through clinical sampling: experimental group I included 11 patients (Squat exercise combined with whole-body vibration exercise), and experimental group II included 10 patients (Only squat exercise). Before intervention, we measured pulmonary function using a pulmonary function tester, muscle activity of quadriceps using surface EMG, and gait ability using the 6MWT. RESULTS: Comparison of intra-group changes in both experimental groups showed a significant increase in the activity of rectus femoris, vastus medialis, and vastus lateralis, and also in the 6MWT. Intra-group comparisons also revealed significant difference in the activity of rectus femoris, vastus medialis, and vastus lateralis (p < .05). CONCLUSION: Squat exercise combined with whole-body vibration significantly increased the activity of the quadriceps muscle, suggesting that this intervention helps maintain the function of skeletal muscles and prevent muscle atrophy. Therefore, studies to develop protocols using whole body vibration in clinical practice as an exercise method can safely be performed in severe COPD patients, as considered necessary.