• Title/Summary/Keyword: Size selectivity

Search Result 295, Processing Time 0.032 seconds

Simultaneous Analysis of Cholesterol Oxidation Products (COPs) in Powdered Milk Using HPLC/UV-Vis

  • Lee, Jin Joo;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2787-2794
    • /
    • 2013
  • Cholesterol and cholesterol oxidation products (COPs) may accumulate in foods of animal origin during processing or storage. An effective and sensitive analytical method was developed by increasing the UV absorption of compounds through derivatization by attaching a chromophore to the functional groups of cholesterols (cholesterol, 20-hydroxycholesterol, 7-ketocholesterol, cholestane-$3{\beta}$-$5{\alpha}$-$6{\beta}$-triol, 25-hydroxycholesterol, and $5,6{\alpha}$-epoxycholesterol). The influences of the reaction time, volume of reaction solvent, amounts of derivatizing reagent, and extraction solvents were investigated, as they may influence the reaction and extraction yield. The derivatized COPs were analyzed simultaneously on a C18 column (2.1 mm i.d. ${\times}$ 100 mm length, $3.5{\mu}m$ particle size) using a gradient elution with water and acetonitrile. The derivatized COPs showed increased sensitivity and selectivity in HPLC/UV-Vis. The LOD and LOQ were in the concentration ranges of 0.018-0.55 mg/kg and 0.059-1.84 mg/kg from the powdered milk. And the accuracy and precision were 78.1-116.7% and 1.1-9.9%, respectively.

Development of process flexibility by SOG resist analysis with AFM lithography (AFM lithography에 있어서 SOG resist의 특성 분석에 의한 공정 여유도 개선)

  • 최창훈;이상훈;김수길;최재혁;박선우
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.309-314
    • /
    • 1996
  • We found that SOG which had been used in plarnarization of VLSI circuit fabrication at present could be used as a resist material for AFM lithography. In this experiment on the basis of previous studies, we improved the process flexibility by controlling the coating film thickness, etching time, etching selectively and proper applied voltage on the pattern size to apply for practical VLSI lithography process. We obtained pattern with the current of 5 nA at 60 V. The line width was 800 $\AA$. With the developed flexibility of SOG as a resist material, AFM lithography will be a expedient technique in the next generation DRAM fabrication.

  • PDF

Design of a Interdigital Microstrip Bandpass Filter (깍지낀 마이크로스트립 대역통과 여파기 설계)

  • 신진옥;전성근;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.565-573
    • /
    • 2000
  • In this paper, a interdigital microstrip bandpass filter is designed. A interdigital microstrip bandpass filter has many advantages such as insertion return loss, lower return loss, higher frequency selectivity and smaller in size in comparison with the conventional coupled line filter. A interdigital microstrip bandpass filter consists of quasi TEM-mode strip line resonators between parallel ground plant. Each resonator element is a quarter wavelength long of the center frequency and is short circuited at one end and open circuited at the other end. In the filter design, Ensemble software is used. Experimental results show that the bandwidth of interdigital microstrip bandpass filter is 2.52GHz, insertion loss is -1.8dB and return loss is -17.0dB at 11.20Hz.

  • PDF

Design of Microstrip Band-Pass filters Using Cross-Coupled Hairpin Resonators (교차결합 헤어핀 공진기를 이용한 마이크로스트립 대역통과 여파기 설계)

  • 오창근;전성근;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.557-564
    • /
    • 2000
  • A microstrip band-pass filter using cross-coupled resonators is designed and studied experimentally. The cross-coupled microstrip hairpin resonator filters exhibit ripples in both passband and stopband. These ripples can improve both frequency selectivity and insertion loss. The cross-coupled filters are not only simple and compact in configuration, but also have great flexibility to form filters into a variety of size. In this paper, a microstrip band-pass filter using cross-coupled resonators is designed at the center frequency of 1.8GHz with bandwidth of 5.0% using Ensemble software. The experimental results show that the bandwidth is about 4.53% at 1.8GHz.

  • PDF

Nanoplasmonic Spectroscopic Imaging and Molecular Probes

  • Choe, Yeon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.85-85
    • /
    • 2013
  • Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.

  • PDF

\Transport Phenomena of Alkali Metal Chlorides theough Poly(2-Hydroxyethyl Methacrylate) Hydrogel Membrane (Poly(2-Hydroxyethyl Methacrylate) 수화겔 막에 대한 알카리 금속 염화물의 수송현상)

  • Seong, Yong-Gil;Lee, Chun-Gi;Jeon, Mu-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.123-134
    • /
    • 1987
  • The transport phenomena of alkali metal chlorides through poly(2 hydroxyethyl methacrylate) hydrogel membrane have been studied using electrodialysis. The hydrogel membranes were prepared by the polymerization of 2-hydroxvethyl methacrylate in the presence of 45%(V/V) H2O and ethyleneglycodimethacrylate. The initiator used in the polymerization was azobismethylisobutyrate (AMIB) prepared from azobisiobtyronitrile (AIBN) using Mortimer method. The permeability of alkali metal chlorides such LiCl, NaCl and KCI at 50 voltage was obtained. The permeability of NaCl was also observed at 30, 40, 50, and 60 voltages respectively. The concentration of solutes permeated through the membrane was measurer by flame photometry. The experimental results have been discussed with the comparison of apparent solute molecular size, the self-diffusion coefficient of solutes, the transport number of cations in aqueous solution. These indic aloes that poly(2 hydroxyethyl methacrylate) hydrogel membrane shows a specific selectivity for sodium ion.

  • PDF

Design of Metamaterial-Inspired FSS Sub-Reflector for a Dual-Band Offset Cassegrain Reflector Antenna (이중대역 오프셋 카세그레인 반사판 안테나용 메타재질구조 모사 주파수 선택표면 부반사판 설계)

  • Kim, Hyeonsu;Kahng, Sungtek;Khattak, M. Kamran;Jeon, Jinsu;Park, Jeong-hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.34-39
    • /
    • 2015
  • In this paper, a design of an offset Cassegrain antenna is proposed for Ku and Ka dual-band without increasing the antenna size. For Efficiency of computation and implementation, the frequency selectivity surface (FSS) of reflecting the Ka-band signal and passing the Ku-band is provided for the sub-reflector instead of the main reflector. The proposed FSS hyperboloid sub-reflector is the periodic structure of a unit cell comprising octagon metal rings embedded in the multiple layers. The proposed design is verified for 19 GHz and 45 GHz bands by the use of precise electromagneitc-field simulations.

Microwave Dielectric Properties of $ZnWO_4$ Ceramics ($ZnWO_4$ 세라믹의 마이크로파 유전특성)

  • Yoon, Sang-Ok;Yun, Jong-Hun;Kim, Dae-Min;Hong, Sang-Heung;Kang, Ki-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.642-645
    • /
    • 2002
  • Microwave dielectric properties of $ZnWO_4$ ceramic were investigated with calcination and sintering temperatures. The dielectric properties required for such application are high dielectric constant$(\varepsilon_r)$, high $Q{\times}f_o$ value and low temperature coefficient of resonant frequency$(\tau_f)$. These requirement correspond to necessities for size reduction, excellent frequency selectivity, good temperature stability of devices. $ZnWO_4$ ceramics could be sintered at low $1075^{\circ}C$, which was comparatively low temperature for microwave dielectrics. As a result, $ZnWO_4$ showed the dielectric constant of 13, quality factor($Q{\times}f_o$ value) of 22000 and 'temperature coefficient of resonant frequency$(\tau_f)$ of $-65{\pm}5ppm/^{\circ}C$.

  • PDF

Highly Tunable Block Copolymer Self-assembly for Nanopatterning

  • Jeong, Yeon-Sik;Jeong, Jae-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.1-6.1
    • /
    • 2011
  • Nanoscale block copolymer (BCP) patterns have been pursued for applications in sub-30 nm nanolithography. BCP self-assembly processing is scalable and low cost, and is well-suited for integration with existing semiconductor fabrication techniques. However, one of the major technical challenges for BCP self-assembly is limited tunability in pattern geometry, dimension, and functionality. We suggest methods for extending the degree of tunability by choosing highly incompatible polymer blocks and utilizing solvent vapor treatment techniques. Siloxane BCPs have been developed as self-assembling resists due to many advantages such as high etch-selectivity, good etch-resistance, long-range ordering, and reduced line-edge roughness. The large incompatibility leads to extensive degree of pattern tunability since the effective volume fraction can be easily manipulated by solvent-based treatment techniques. Thus, control of the microdomain size, periodicity, and morphology is possible by changing the vapor pressure and the mixing ratio of selective solvents. This allows a range of different pattern geometry such as dots, lines and holes and critical dimension simply by changing the processing conditions of a given block copolymer without changing a polymer chain length. We demonstrate highly extensive tunability (critical dimension ~6~30 nm) of self-assembled patterns prepared by a siloxane BCP with extreme incompatibility.

  • PDF

Characteristics of LPG Fuel Reforming using Plasma Technology (플라즈마를 이용한 LPG연료 개질 특성연구)

  • Kim, Changup
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, characteristics of reforming process of automotive liquefied petroleum gas (LPG) fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2/C$ ratios, reactant flow rate and metal form on the process were investigated. In the test of varying $O_2/C$ ratio from partial oxidation to stoichiometry combustion, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2/C$ ratio for the highest $H_2$ yield was determined to be around 1.0 for 20~50 lpm, and 1.35 for 100 lpm. Specific energy density (SED) was major factor in reforming process and higher SED leads to higher $H_2$ yield. And metal form in the reformer increased $H_2$ yield of about 34 % as compared to the case of no metal form. The result can be a guide to map optimal condition of reforming process.