• Title/Summary/Keyword: Size optimum design

Search Result 512, Processing Time 0.026 seconds

Optical System Design for Thermal Target Recognition by Spiral Scanning [TRSS]

  • Kim, Jai-Soon;Yoon, Jin-Kyung;Lee, Ho-Chan;Lee, Jai-Hyung;Kim, Hye-Kyung;Lee, Seung-Churl;Ahn, Keun-Ok
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.174-181
    • /
    • 2004
  • Various kinds of systems, that can do target recognition and position detection simultaneously by using infrared sensing detectors, have been developed. In this paper, the detection system TRSS (Thermal target Recognition by Spiral Scanning) adopts linear array shaped uncooled IR detector and uses spiral type fast scanning method for relative position detection of target objects, which radiate an IR region wavelength spectrum. It can detect thermal energy radiating from a 9 m-size target object as far as 200 m distance. And the maximum field of a detector is fully filled with the same size of target object at the minimum approaching distance 50 m. We investigate two types of lens systems. One is a singlet lens and the other is a doublet lens system. Every system includes one aspheric surface and free positioned aperture stop. Many designs of F/1.5 system with ${\pm}5.2^{\circ}$ field at the Efl=20, 30 mm conditions for single element and double elements lens system respectively are compared in their resolution performance [MTF] according to the aspheric surface and stop position changing on their optimization process. Optimum design is established including mechanical boundary conditions and manufacturing considerations.

Effect of Design Shape on Fatigue Life of Plug Welded Joint (플러그 용접이음부의 피로수명에 미치는 설계형상의 영향)

  • 임재규;이중삼;서도원
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.29-35
    • /
    • 1999
  • This study was intended to use for the fatigue test in real structures and offer basic data for optimum welding structure design. To this purpose, we obserded the effect of the size and distance of plug welding hole on the static strength and fatigue life of welding structure under the shear/bending load for the improvement of fatigue life of plug welding joint between S/MBR and C/MBR in the lower structure of large bus. The result below is shown through this study. 1) Static and fatigue strength are strongly influenced by the direction of plug weld hole distributed. 2) Distances and diameters of the distributed holes are little dependent on the static strengths 3) In case of the directions of the distributed plug weld holes are vertical to the loading pin, fatigue life is dependent on distance of the distributed hole. 4) In case of the directions of the distributed plug weld holes are parallel to the loading pin, fatigue life is dependent on distance of the hole diameter.

  • PDF

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

Optimal fin planting of splayed multiple cross-sectional pin fin heat sinks using a strength pareto evolutionary algorithm 2

  • Ramphueiphad, Sanchai;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • This research aims to demonstrate the optimal geometrical design of splayed multiple cross-sectional pin fin heat sinks (SMCSPFHS), which are a type of side-inlet-side-outlet heat sink (SISOHS). The optimiser strength Pareto evolutionary algorithm2 (SPEA2)is employed to explore a set of Pareto optimalsolutions. Objective functions are the fan pumping power and junction temperature. Function evaluations can be accomplished using computational fluid dynamics(CFD) analysis. Design variablesinclude pin cross-sectional areas, the number of fins, fin pitch, thickness of heatsink base, inlet air speed, fin heights, and fin orientations with respect to the base. Design constraints are defined in such a way as to make a heat sink usable and easy to manufacture. The optimum results obtained from SPEA2 are compared with the straight pin fin design results obtained from hybrid population-based incremental learning and differential evolution (PBIL-DE), SPEA2, and an unrestricted population size evolutionary multiobjective optimisation algorithm (UPSEMOA). The results indicate that the splayed pin-fin design using SPEA2 issuperiorto those reported in the literature.

A Study on Standardization of Data Bus for Modular Small Satellite (모듈화 소형위성의 Data Bus 표준화 방안 연구)

  • Jang, Yun-Uk;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.620-628
    • /
    • 2010
  • Small satellites can be used for various space research and scientific or educational purposes due to advantages in small size, low-cost, and rapid development. Small Satellites have many advantages of application to Responsive Space. Compared to traditional larger satellites, however, Small satellites have many constraints due to limitations in size. Therefore, it is difficult to expect high performance. To approach maximum capability with minimal size, weight, and cost, standard modular platform of Small satellites is necessary. Modularity supports plug-and-play architecture. The result is Small satellites that can be combined quickly and reliably using plug-and-play mechanisms. For communication between modules, standard bus interface is needed. Controller Area Network(CAN) protocol is considered optimum data bus for modular Small satellite. CAN can be applied to data communication with high reliability. Hence, design optimization and simplification can also be expected. For ease of assembly and integration, modular design can be considered. This paper proposes development method for standardized modular Small satellites, and describes design of data interface based on CAN and a method of testing for modularity.

Emulsification and Stability of Wheat Germ Oil in Water Emulsions: Optimization using CCD-RSM (밀배아유 원료 O/W 유화액의 제조 및 안정성평가: CCD-RSM을 이용한 최적화)

  • Hong, Seheum;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.562-568
    • /
    • 2021
  • An O/W (oil in water) emulsion, wheat germ oil raw material, was produced by using natural wheat germ oil and composite sugar-ester. The effects of variables such as the hydrophile-lipophile balance (HLB) value, added emulsifier amount, and emulsification time on the average particle size, emulsification viscosity and ESI of O/W wheat germ oil emulsion were investigated. The parameters of the emulsification process produced by the central composite design model of the response surface methodology (CCD-RSM), which is a reaction surface analysis method, were simulated and optimized. The optimum process conditions obtained from this paper for the production of O/W wheat germ oil emulsion were 8.4, 6.4 wt%, 25.4 min for the HLB value, amount of emulsifier, and emulsion time, respectively. The predicted reaction values by CCD-RSM model under the optimum conditions were 206 nm, 8125 cP, and 98.2% for mean droplet size (MDS), viscosity, and ESI, respectively, based on the emulsion after 7 days. The MDS, viscosity and ESI of the emulsion obtained from actual experiments were 209 nm, 7974 cP and 98.7%, respectively. Therefore, it was possible to design an optimization process for evaluating the stability of the emulsion of wheat germ oil raw material by CCD-RSM.

What are Legible Korean Font Sizes within In-Vehicle Information Systems?

  • Kim, Huhn;Park, Soo-Hyun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.397-406
    • /
    • 2012
  • Objective: The aim of this study is to determine legible Korean font sizes within in-vehicle information systems(IVISs) in diving conditions. Background: Font legibility within IVISs is one of important causes on its' safe operations during driving. Several researches proposed some guidelines on the legible English font sizes within IVISs. On the contrary, appropriate Korean font sizes have been hardly known in spite of the typological differences between English and Korean. Therefore, more systematic researches for improving the legibility on Korean font size within IVISs have been required. Method: In this study, an experiment was performed with the following experimental factors: the existence of vibration, the color contrasts(white on black, black on white), the font types(HDR, CubeR, Gothic), and the font sizes(6, 8, 10, 12, 14, 16, 18, 20, 22, 24pt). To fit the experimental conditions into real driving environments, the illuminance was controlled to 15lx by using LED lamp and the distance between IVIS and participants was kept to 70cm. Moreover, all participants took the shutter glasses for employing well-known occlusion techniques. Results: The experimental results showed that 'HDR' and 'Non-vibration + Black on white' group took the shortest response time, and decreasing slopes of the response time with increasing font sizes were slowing down at 14pt then flattened out at 22pt regardless of the existence of vibration and color contrasts. Conclusion: The minimum size for legible Korean font would be about 14pt(5.47mm) and the optimum size would be about 22pt(8.59mm). Application: The guideline on the Korean font sizes from this study will be applied to design an IVIS in the future.

Taguchi's Robust Design Method for Optimization of Grinding Condition by Hammer Mill (다구치 방법을 활용한 해머밀 분쇄공정의 최적화 연구)

  • Choe, Hong-Il;Kim, Byoung-Gon;Park, Chong-Lyuck;Jeong, Soo-Bok;Jeon, Ho-Seok;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.219-225
    • /
    • 2010
  • Optimal grinding condition was examined by changing only the size of screen opening with fixing other factors to produce coal fines of particle sizes required for circulating fluidized bed gasifier. At least 85 wt% of the coal particles should fall into the size range of 0.045~1.0 mm for efficient gasification. In this study, hammer mill was used to grind Chinese low rank lignite coal following grinding condition designed by Taguchi method. The analysis of signal to noise ratio showed that optimum grinding condition for the gasifier was 3 mm in primary screen size and 1.3 mm in secondary screen size on the 95% level of significance.

Analysis of economy and load effect of hybrid tower for wind turbine (풍력발전용 하이브리드 타워 경제성 및 하중영향 분석)

  • Lee, Seunugmin;Park, Hyunchul;Chung, Chinwha;Kwon, Daeyong;Kim, Yongchun;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.185.2-185.2
    • /
    • 2010
  • With the development of wind industry, the rated power of wind turbine also increase gradually. Accordingly, the size of wind turbine tower becomes larger and larger. The tower base diameter of 2MW wind turbine is about 4m. Larger tower is expected for 4MW or 5MW turbine. Due to limitation of transportation, new type of tower with smooth transportation and effective cost is needed. In this work, a hybrid tower consisting of steel and concrete is designed and analyzed. The optimum ratio of steel and concrete of hybrid tower are calculated as well as the thickness of the concrete part. Different FE analysis including modal analysis, buckling analysis and fatigue analysis are performed to check the design of hybrid tower comparing with the steel tower. Redesign is also expected after various analysis.

  • PDF

A Study on the Topology Optimization of Electric Vehicle Cross beam using an Optimality Criteria Method in Determination of Arranging Hole( I ) (원공배열 결정에 최적기준법에 의한 전동차 크로스 빔의 위상최적화에 관한 연구( I ))

  • 전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.137-145
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. a lightweight vehicle body is salutary to save operating costs and fuel consumption. Therefore this study is to perform the size and the shape optimization of crossbeam for electric vehicle using the method of topology optimization to introduce the concept of homogenization based on optimality criteria method which is efficient for the problem having the number of design variables and a few boundary condition. this provides the method to determine the optimum position and shape of circular hole in the cross beam and then can achieve the optimal design to reduce weight.