• Title/Summary/Keyword: Size optimum design

Search Result 512, Processing Time 0.027 seconds

Optimum design of shape and size of truss structures via a new approximation method

  • Ahmadvand, Hosein;Habibi, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.799-821
    • /
    • 2020
  • The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

The Shape Optimization Design of Space Trusses Using Genetic Algorithms (퍼지-유전자 알고리즘에 의한 공간 트러스의 형상 최적화)

  • Park, Choon-Wook;Kim, Su-Won;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.61-70
    • /
    • 2002
  • The objective of this study is the development of a size and shape discrete optimum design algorithms, which is based on the genetic algorithms and the fuzzy theory. This algorithms can perform both size and shape optimum designs of plane and space trusses. The developed fuzzy shape-GAs (FS-GAs) was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. This study solves the problem by introducing the FS-GAs operators into the genetic.

  • PDF

Design Automatization of Space Truss Structure Using Optimizations Technique (최적화 기법을 이용한 3차원 트러스 구조물의 설계자동화)

  • 최은규;임기식;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.81-90
    • /
    • 1993
  • The optimum design of a structure requires the determination of the economical member size and shape of the structure which satisfies the design condition and function. In this study, the process of design automatization of three-dimensional truss structure introduces the optimization technique tests its application in the design automatization, proposes its application method and applies the example structure of the parabolic antenna truss. Using the Formex Algebra of configuration function, the structure's mesh-generation is automatized. By using the program developed in this study, the input member array, member size and load condition designer can generate the input data file for the structure analysis and optimum design. This study is aimed at the development of a design automatization system that search for tile optimum value of a structure design by observing the structure's sensitivity from the modification of member array and member property.

  • PDF

A Study on the Optimum Pre-form Design for Multistage Deep Drawing of Oval Shells (타원형 다단계 디프드로잉 용기의 최적 예비형성 설계에 관한 연구)

  • 김두환
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.356-363
    • /
    • 1999
  • This paper discusses some techniques for the determination of optimum blank size and pre-form design for multi-stepped deep drawing of oval shell. The deep drawing process of oval shape has been regarded as more difficult than that of cylindrical shell because of its complicated behavior of plastic deformation. But there is insufficient information in this area to carry out successful deep drawing work of irregular products such as oval, rectangular, and square shapes. In order to find the optimum conditions, the drawing apparatus for two kinds of pre-form design are built, a series of drawing experiments performed, and thickness stain distributions measured. From the results of thess suggested experiments, various optimum process variables are observed and discussed.

  • PDF

Sample Size Calculation in Medical Research (의학연구에서 표본크기 계산)

  • Pak, Son-Il;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.29 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • Whenever planning a study design or preparing a research proposal it is highly recommended that investigators decide the optimum sample size that is required to yield an outcome of interest with a predetermined level of precision. This is because that, all else being equal, if a study with less than the optimum sample size would not detect the significance of differences in reality, and similarly, if a study with more than the optimum sample size will be costly. For these reasons, the majority of peer reviewed biomedical journals assess the adequacy of sample size requirements. The calculated sample size is used as a target number of samples to be collected to provide an estimate of the parameter with the desired and predetermined level of accuracy, and the sample size is a major determinant of the probability of detecting diseased animals from the population. There is no single method of calculating sample size for any given study design. In this context, the purpose of this article is to provide a collection of formulas and examples for some typical situations likely to be encountered in veterinary clinical practice and to highlight the importance of performing prospective sample size calculations when planning a research. Specifically, this paper is concerned with the basic principle of sample size calculation, and considerations for methodological applications were illustrated for a given data set. Also included in this paper is factors influencing sample size calculations using a statistically valid techniques. Appropriate methods to consider these factors are presented.

Optimum design of FRP box-girder bridges

  • Upadhyay, Akhil;Kalyanaraman, V.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.539-554
    • /
    • 2010
  • Light weight superstructure is beneficial for bridges in remote areas and in emergency erection. In such weight sensitive applications, combination of fibre reinforced plastics (FRP) as material and box-girders as a structural system have great scope. This combination offers various options to tailor structure and its elements but this flexibility poses greater challenge in optimum design. In this paper a procedure is derived for a generalised optimum design of FRP box-girder bridges, using genetic algorithms (GA). The formulation of the optimum design problem in the form of objective function and constraints is presented. Size, configuration and topology optimization are done simultaneously. A few optimum design studies are carried out to check the performance of the developed procedure and to get trends in the optimum design which will be helpful to the new designers.

An Application of Micro-GA for the Design Optimization of Steel Box Girder Bridges (강상형교 설계최적화를 위한 마이크로 유전알고리즘의 적용)

  • 김제헌;류연선;김정태;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.154-161
    • /
    • 2001
  • A procedure of the design optimization for steel box girder bridges using micro genetic algorithms(μGA) is developed. The effect of population size is investigated and the efficiency and reliability of μGA is demonstrated in the optimum design of steel box girder bridges. Optimum design problems of steel box girder bridges are formulated, where tile design of concrete slab is based on the USD specifications and steel box girder based on LRFD respectively. Design of optimizations of single-span and 2-span steel box girder bridges are performed with the population size of 5, 40, 80, and 120, respectively The μGA-based optimum design of the 3-span steel box girder bridge is compared with SQP results.

  • PDF

A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings

  • Li, Gang;Lu, Haiyan;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.19-35
    • /
    • 2010
  • This paper proposes a hybrid heuristic and criteria-based method of optimum design which combines the advantages of both the iterated simulated annealing (SA) algorithm and the rigorously derived optimality criteria (OC) for structural optimum design of reinforced concrete (RC) buildings under multi-load cases based on the current Chinese design codes. The entire optimum design procedure is divided into two parts: strength optimum design and stiffness optimum design. A modified SA with the strategy of adaptive feasible region is proposed to perform the discrete optimization of RC frame structures under the strength constraints. The optimum stiffness design is conducted using OC method with the optimum results of strength optimum design as the lower bounds of member size. The proposed method is integrated into the commercial software packages for building structural design, SATWE, and for finite element analysis, ANSYS, for practical applications. Finally, two practical frame-shear-wall structures (15-story and 30-story) are optimized to illustrate the effectiveness and practicality of the proposed optimum design method.

Analysis on the flow of $U_3O_8$ powder for design of the voloxidizer (건식분말화 장치설계를 위한 $U_3O_8$ 분말의 미세입자 유동해석)

  • Kim Y. H.;Jung J. H.;Hong D. H.;Yoon J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.454-457
    • /
    • 2005
  • Voloxidizer for hot cell demonstration that handle spend fuel of high radiation virulence in limited space should become a small size and not scatter in its exit. This study determine optimum velocity of $U_3O_8$ using Newton-Raphson Method. We have conducted fortran programing on the Newton-Raphson Method, obtained a theory results and, predicted optimum velocity on the particle size distribution of $U_3O_8$. We have conducted experimentation using acrylic experimental device for verification of theory method, sampled and analyzed using the particle size analyzer In the results, we have found maximum $5\~7\%$ error rate in the comparative value of theory and experimentation. Optimum velocity and experimental results of $U_3O_8$ for scatter prevention have applied for design of demonstration voloxidizer, and produced operation condition of voloxidizer.

  • PDF

A Study on the Competitive Power Analysis and Optimum Ship Size in the Fishing Vessels (어업별 어선경쟁력 분석 및 최적규모에 관한 연구)

  • 박제웅
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • The purpose of this paper is to study the subject of economic evaluation in respect of optimum ship size and basic design spiral for fishing vessels. The main ta나 is developed the methodology of engineering economic system in order to apply various methods and tools which may be utilized by the designer in his efforts to arrive at principal design characteristics of fishing vessels with optimum size. The design procedure has been modeled in mathematical form with CBR as an criteria and applied to the optimization method. The contents of the study are as follows (the special treatises).

  • PDF