• Title/Summary/Keyword: Size optimization design

Search Result 691, Processing Time 0.023 seconds

A Sequential Approximate Optimization Technique Using the Previous Response Values (응답량 재사용을 통한 순차 근사최적설계)

  • Hwang Tae-Kyung;Choi Eun-Ho;Lim O-Kaung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.45-52
    • /
    • 2005
  • A general approximate optimization technique by sequential design domain(SDD) did not save response values for getting an approximate function in each step. It has a disadvantage at aspect of an expense. In this paper, previous response values are recycled for constructing an approximate function. For this reason, approximation function is more accurate. Accordingly, even if we did not determine move limit, a system is converged to the optimal design. Size and shape optimization using approximate optimization technique is carried out with SDD. Algorithm executing Pro/Engineer and ANSYS are automatically adopted in the approximate optimization program by SDD. Convergence criterion is defined such that optimal point must be located within SDD during the three steps. The PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information in the direction finding problem and uses the active set strategy.

A Study on Size Optimization for Rocket Motor with a Torispherical Dome (토리구형 돔 형상을 갖는 연소관의 치수 최적화 설계 연구)

  • Choi, Young-Gwi;Shin, Kwang-Bok;Kim, Won-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.567-573
    • /
    • 2010
  • In this study, we evaluated the structural integrity and weight of a rocket motor with a torispherical dome by size optimization. Size optimization was achieved by first-order and sub-problem methods, using the Ansys Parametric Design Language (APDL). For rapid design verification, a modified 2D axisymmetric finite-element model was used, and the bolt pre-tension load was expressed as function of the ratio of the cross-sectional area. The thickness of the dome and the cylindrical part of the rocket motor were selected as the design parameters. Our results showed that the weight and structural integrity of the rocket motor at the initial design stage could be determined more rapidly and accurately with the modified 2D axisymmetric finite-element model than with the 3D finite-element model; further, the weight of the rocket motor could be saved to maximum of 17.6% within safety limit.

Study of Size Optimization for Skirt Structure of Composite Pressure Vessel (복합재 압력용기의 스커트 치수 최적화 설계 연구)

  • Kim, Jun Hwan;Shin, Kwang Bok;Hwang, Tae Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • This study aims to find the optimal skirt dimensions for a composite pressure vessel with a separated dome part. The size optimization for the skirt structure of the composite pressure vessel was conducted using a sub-problem approximation method and batch processing codes programmed using ANSYS Parametric Design Language (APDL). The thickness and length of the skirt part were selected as design variables for the optimum analysis. The objective function and constraints were chosen as the weight and the displacement of the skirt part, respectively. The numerical results showed that the weight of the skirt of a composite pressure vessel with a separated dome part could be reduced by a maximum of 4.38% through size optimization analysis of the skirt structure.

A development of move limit strategy based on the accuracy of approximation for structural optimization (구조최적설계시 근사법의 정확도를 이용한 이동한계 전략의 개발)

  • Park, Young-Sun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1218-1228
    • /
    • 1997
  • The move limit strategy is used to avoid the excessive approximation in the structural optimization. The size of move limit has been obtained by engineering experience. Recently, efforts based on analytic methods are performed by some researchers. These methods still have problems, such as prematurity or oscillation of the move limit size. The existing methods usually control the bound of design variables based on the magnitude. Thus, they can not properly handle the configuration variables based on the geometry in the configuration optimization. In this research, the size of move limit is calculated based on the accuracy of approximation. The method is coded and applied to the two-point reciprocal quadratic approximation method. The efficiency is evaluated through examples.

Dynamic Analysis and Optimum Design of Suspensions for Information Storage Devices (정보저장기기 서스펜션의 동특성 해석 및 최적설계)

  • Kim, Yun-Sik;Lee, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.576-581
    • /
    • 2002
  • The suspension is a structure that supports reading, writing head in information storage device. In order to develop the information storage device of high track density, it is necessary to study about the suspension. To satisfy operation condition of information storage device, the suspension shape is very important since it correlates to dynamic characteristics. Therefore, it is necessary to analyze the dynamic characteristics by using finite element analysis and to optimize the suspension of information storage device using size optimization and topology optimization. The suspension has various modes according to different kinds of frequency bandwidth. Sway mode and second torsion mode are especially critical among them. In this paper, we investigated method to improve bandwidth of sway and second torsion mode of HDD and ODD suspension by using size optimization and topology optimization.

  • PDF

Applications of Micro Genetic Algorithms to Engineering Design Optimization (마이크로 유전알고리듬의 최적설계 응용에 관한 연구)

  • Kim, Jong-Hun;Lee, Jong-Soo;Lee, Hyung-Joo;Koo, Bon-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.158-166
    • /
    • 2003
  • The paper describes the development and application of advanced evolutionary computing techniques referred to as micro genetic algorithms ($\mu$GA) in the context of engineering design optimization. The basic concept behind $\mu$GA draws from the use of small size of population irrespective of the bit string length in the representation of design variable. Such strategies also demonstrate the faster convergence capability and more savings in computational resource requirements than simple genetic algorithms (SGA). The paper first explores ten-bar truss design problems to see the optimization performance between $\mu$GA and SGA. Subsequently, $\mu$GA is applied to a realistic engineering design problem in the injection molding process optimization.

The Large Optical Structure Designed by Topology Optimization Methodology (위상 최적화 방법에 의해 설계된 대구경 구조물)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2179-2182
    • /
    • 2009
  • Recently, the development of new structural model in optical mechanical system is required to be started from the conceptual design with low cost, high performance and quality. In this point, a structural-topological shape of system concerned with conceptual design of mechanical structure has a great effect on performance of the system such as the structural rigidities and weight reduction. In this paper, the optimization design methodologies are presented in the design stages of large optical structure. First, using topology optimization, we obtain the optimal layout and the reinforcement of structure, and then carry out the detail designs using size optimization and multidisciplinary optimization technique. As an example, these methods were applied to the design of large mirror structure.

Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Optimization Method (다단계 최적화기법을 이용한 치과용 골내 임플란트의 3차원 형상최적설계)

  • 한중석;김종수;최주호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.143-150
    • /
    • 2004
  • An optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen for design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size for each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem.

  • PDF

Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Response Surface Optimization (다단계 반응표면법을 이용한 치과용 임플란트의 3차원 형상최적설계)

  • Han, Jung-Suk;Kim, Jong-Soo;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.940-947
    • /
    • 2004
  • In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen for design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size for each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem.

Topology Optimization of Electromagnetic Systems Using Material Sensitivity Analysis (매질 민감도해석을 이용한 전자기시스템의 위상 최적설계)

  • Byun Jin-Kyu;Choi Hong-Soon;Hahn Song-Yop;Park Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.163-173
    • /
    • 2005
  • The conventional optimization study for electromagnetic systems has been mostly on the shape or size optimization. The goal for these optimization methods is to improve performance of electromagnetic systems by optimizing the interface shape of two different materials while their given layout or initial topology are held. The feasible topology can be diverse and an appropriate topology will give much better design results. In this paper we propose a theory and an algorithm for topology optimization of electromagnetic systems, which are based on the finite element method. The topology optimization technique employes a direct searching method of sensitivity analysis in which the information of material sensitivity is used. Two numerical examples of a switched reluctance motor and an electrostatic actuator of MEMS are tested and their design results show that the optimization method is valid and useful for the topology and basic layout design of electromagnetic systems.