• Title/Summary/Keyword: Size of loop

Search Result 460, Processing Time 0.03 seconds

A Class-C type Wideband Current-Reuse VCO With 2-Step Auto Amplitude Calibration(AAC) Loop (2 단계 자동 진폭 캘리브레이션 기법을 적용한 넓은 튜닝 범위를 갖는 클래스-C 타입 전류 재사용 전압제어발진기 설계)

  • Kim, Dongyoung;Choi, Jinwook;Lee, Dongsoo;Lee, Kang-Yoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.94-100
    • /
    • 2014
  • In this paper, a design of low power Current-Reuse Voltage Controlled Oscillator (VCO) which has wide tuning range about 1.95 GHz ~ 3.15 GHz is presented. Class-C type is applied to improve phase noise and 2-Step Auto Amplitude Calibration (AAC) is used for minimizing the imbalance of differential VCO output voltage which is main issue of Current-Reuse VCO. The mismatch of differential VCO output voltage is presented about 1.5mV ~ 4.5mV. This mismatch is within 0.6 % compared with VCO output voltage. Proposed Current-Reuse VCO is designed using CMOS $0.13{\mu}m$ process. Supply voltage is 1.2 V and current consumption is 2.6 mA at center frequency. The phase noise is -116.267 dBc/Hz at 2.3GHz VCO frequency at 1MHz offset. The layout size is $720{\times}580{\mu}m^2$.

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

Severe Accident Sequence Analysis - Part 1: Analysis of Postulated Core Meltdown Accident Initiated by Small Break LOCA in Kori-1 PWR Dry Containment (고리 1호기 소형파단 냉각제 상실사고에 의해 개시된 가상 노심용융 사고 해석)

  • Jong In Lee;Seung Hyuk Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.141-154
    • /
    • 1984
  • An analysis is presented of key phenomena and scenario which imply some general trends for beyond design-basis-accident in Kori-1 PWR dry containment. The study covers a wide range of severe accident sequences initiated by small break LOCA. The MARCH computer code, with KAERI modifications was used in this analysis. The major emphasis of the paper are two folds, 1) the phenomenologic understanding of severe accident and 2) a study of H2 combustion and debris/ water interactions in a specific small break LOCA for Kori-1 plant. The sensitivity studies for the specific plant data and thermal interaction modelings used in the SASA were performed. The results show that if hydrogen burning does occur at low concentration, the resulting peak pressure does not exceed the design value, while the lower concentration assumption results in repeated burning due to the continuing H$_2$ generation. For debris/water interaction, the particle size has no effect on the magnitude of peak pressure for the amount of water assumed to be in the reactor cavity. But, the occurrence of peak pressure is considerably delayed in case of using the dryout correlation. The peak containment pressure predicted from the hydrogen combustion and steam pressure spite during full core meltdown scenario does not present a severe threat to the containment integrity.

  • PDF

Mono-Vision Based Satellite Relative Navigation Using Active Contour Method (능동 윤곽 기법을 적용한 단일 영상 기반 인공위성 상대항법)

  • Kim, Sang-Hyeon;Choi, Han-Lim;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.902-909
    • /
    • 2015
  • In this paper, monovision based relative navigation for a satellite proximity operation is studied. The chaser satellite only uses one camera sensor to observe the target satellite and conducts image tracking to obtain the target pose information. However, by using only mono-vision, it is hard to get the depth information which is related to the relative distance to the target. In order to resolve the well-known difficulty in computing the depth information with the use of a single camera, the active contour method is adopted for the image tracking process. The active contour method provides the size of target image, which can be utilized to indirectly calculate the relative distance between the chaser and the target. 3D virtual reality is used in order to model the space environment where two satellites make relative motion and produce the virtual camera images. The unscented Kalman filter is used for the chaser satellite to estimate the relative position of the target in the process of glideslope approaching. Closed-loop simulations are conducted to analyze the performance of the relative navigation with the active contour method.

A User Driven Adaptive Bandwidth Video Streaming System (사용자 기반 가변 대역폭 영상 스트리밍 시스템)

  • Chung, Yeongjee;Ozturk, Yusuf
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.825-840
    • /
    • 2015
  • Adaptive bitrate (ABR) streaming technology has become an important and prevalent feature in many multimedia delivery systems, with content providers such as Netflix and Amazon using ABR streaming to increase bandwidth efficiency and provide the maximum user experience when channel conditions are not ideal. Where such systems could see improvement is in the delivery of live video with a closed loop cognitive control of video encoding. In this paper, we present streaming camera system which provides spatially and temporally adaptive video streams, learning the user's preferences in order to make intelligent scaling decisions. The system employs a hardware based H.264/AVC encoder for video compression. The encoding parameters can be configured by the user or by the cognitive system on behalf of the user when the bandwidth changes. A cognitive video client developed in this study learns the user's preferences(i.e. video size over frame rate) over time and intelligently adapts encoding parameters when the channel conditions change. It has been demonstrated that the cognitive decision system developed has the ability to control video bandwidth by altering the spatial and temporal resolution, as well as the ability to make scaling decisions.

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF

Ferroelectric Properties of Ti-Doped and W-Doped SBT Ceramics (Ti와 W이 첨가된 SBT 세라믹스의 강유전 특성)

  • 천채일;김정석
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.401-405
    • /
    • 2004
  • Undoped SrB $i_2$T $a_2$O$_{9}$, donor-doped Sr$_{0.99}$B $i_2$(Ta$_{0.99}$W$_{0.01}$)$_2$O$_{9}$ and acceptor-doped SrB $i_2$(Ta$_{0.99}$Ti$_{0.01}$)$_2$O$_{8.99$ ceramics were prepared and their microstructure, ferroelectric P-E hysteresis and Curie temperature were investigated. Grain size did not influence P-E hysteresis curve in undoped SrB $i_2$T $a_2$O$_{9}$ ceramics. Donor-Doped Sr$_{0.99}$B $i_2$(Ta$_{0.99}$W$_{0.01}$)$_2$O$_{9}$ ceramics showed more saturated P-E hysteresis curve with larger remanent polarization (P$_{r}$) than undoped SrB $i_2$T $a_2$O$_{9}$ ceramics while acceptor-doped SrB $i_2$(Ta$_{0.99}$Ti$_{0.01}$)$_2$O$_{8.99}$ ceramics led to a pinched P-E hysteresis loop. Larger polarization in donor-doped Sr$_{0.99}$B $i_2$(Ta$_{0.99}$W$_{0.01}$)$_2$O$_{9}$ ceramics resulted from easier domain wall motion by Sr-vacancies.

Clinicopathologic Characteristics and Prognoses for Multicentric Occurrence and Intrahepatic Metastasis in Synchronous Multinodular Hepatocellular Carcinoma Patients

  • Li, Shi-Lai;Su, Ming;Peng, Tao;Xiao, Kai-Yin;Shang, Li-Ming;Xu, Bang-Hao;Su, Zhi-Xiong;Ye, Xin-Ping;Peng, Ning;Qin, Quan-Lin;Chen, De-Feng;Chen, Jie;Li, Le-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.217-223
    • /
    • 2013
  • Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the outcomes for patients are still poor. It is important to determine the original type of synchronous multinodular HCC for preoperative assessment and the choice of treatment therapy as well as for the prediction of prognosis after treatment. Aims: To analyze clinicopathologic characteristics and prognoses in patients with multicentric occurrence (MO) and intrahepatic metastasis (IM) of synchronous multinodular hepatocellular carcinoma (HCC). Methods: The study group comprised 42 multinodular HCC patients with a total of 112 nodules. The control group comprised 20 HCC patients with 16 single nodular HCC cases and 4 HCC cases with a portal vein tumor emboli. The mitochondrial DNA (mtDNA) D-loop region was sequenced, and the patients of the study group were categorized as MO or IM based on the sequence variations. Univariate and multivariate analyses were used to determine the important clinicopathologic characteristics in the two groups. Results: In the study group, 20 cases were categorized as MO, and 22 as IM, whereas all 20 cases in the control group were characterized as IM. Several factors significantly differed between the IM and MO patients, including hepatitis B e antigen (HBeAg), cumulative tumor size, tumor nodule location, cirrhosis, portal vein and/or microvascular tumor embolus and the histological grade of the primary nodule. Multivariate analysis further demonstrated that cirrhosis and portal vein and/or microvascular tumor thrombus were independent factors differentiating between IM and MO patients. The tumor-free survival time of the MO subjects was significantly longer than that of the IM subjects ($25.7{\pm}4.8$ months vs. $8.9{\pm}3.1$ months, p=0.017). Similarly, the overall survival time of the MO subjects was longer ($31.6{\pm}5.3$ months vs. $15.4{\pm}3.4$ months, p=0.024). The multivariate analysis further demonstrated that the original type (p=0.035) and Child-Pugh grade (p<0.001) were independent predictors of tumor-free survival time. Cirrhosis (p=0.011), original type (p=0.034) and Child-Pugh grade (p<0.001) were independent predictors of overall survival time. Conclusions: HBeAg, cumulative tumor size, tumor nodule location, cirrhosis, portal vein and/or microvascular tumor embolus and histological grade of the primary nodule are important factors for differentiating IM and MO. MO HCC patients might have a favorable outcome compared with IM patients.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach (집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.55-79
    • /
    • 2013
  • In this paper, we propose a hybrid genetic algorithm (HGA) approach to effectively solve the reverse logistics network with centralized centers (RLNCC). For the proposed HGA approach, genetic algorithm (GA) is used as a main algorithm. For implementing GA, a new bit-string representation scheme using 0 and 1 values is suggested, which can easily make initial population of GA. As genetic operators, the elitist strategy in enlarged sampling space developed by Gen and Chang (1997), a new two-point crossover operator, and a new random mutation operator are used for selection, crossover and mutation, respectively. For hybrid concept of GA, an iterative hill climbing method (IHCM) developed by Michalewicz (1994) is inserted into HGA search loop. The IHCM is one of local search techniques and precisely explores the space converged by GA search. The RLNCC is composed of collection centers, remanufacturing centers, redistribution centers, and secondary markets in reverse logistics networks. Of the centers and secondary markets, only one collection center, remanufacturing center, redistribution center, and secondary market should be opened in reverse logistics networks. Some assumptions are considered for effectively implementing the RLNCC The RLNCC is represented by a mixed integer programming (MIP) model using indexes, parameters and decision variables. The objective function of the MIP model is to minimize the total cost which is consisted of transportation cost, fixed cost, and handling cost. The transportation cost is obtained by transporting the returned products between each centers and secondary markets. The fixed cost is calculated by opening or closing decision at each center and secondary markets. That is, if there are three collection centers (the opening costs of collection center 1 2, and 3 are 10.5, 12.1, 8.9, respectively), and the collection center 1 is opened and the remainders are all closed, then the fixed cost is 10.5. The handling cost means the cost of treating the products returned from customers at each center and secondary markets which are opened at each RLNCC stage. The RLNCC is solved by the proposed HGA approach. In numerical experiment, the proposed HGA and a conventional competing approach is compared with each other using various measures of performance. For the conventional competing approach, the GA approach by Yun (2013) is used. The GA approach has not any local search technique such as the IHCM proposed the HGA approach. As measures of performance, CPU time, optimal solution, and optimal setting are used. Two types of the RLNCC with different numbers of customers, collection centers, remanufacturing centers, redistribution centers and secondary markets are presented for comparing the performances of the HGA and GA approaches. The MIP models using the two types of the RLNCC are programmed by Visual Basic Version 6.0, and the computer implementing environment is the IBM compatible PC with 3.06Ghz CPU speed and 1GB RAM on Windows XP. The parameters used in the HGA and GA approaches are that the total number of generations is 10,000, population size 20, crossover rate 0.5, mutation rate 0.1, and the search range for the IHCM is 2.0. Total 20 iterations are made for eliminating the randomness of the searches of the HGA and GA approaches. With performance comparisons, network representations by opening/closing decision, and convergence processes using two types of the RLNCCs, the experimental result shows that the HGA has significantly better performance in terms of the optimal solution than the GA, though the GA is slightly quicker than the HGA in terms of the CPU time. Finally, it has been proved that the proposed HGA approach is more efficient than conventional GA approach in two types of the RLNCC since the former has a GA search process as well as a local search process for additional search scheme, while the latter has a GA search process alone. For a future study, much more large-sized RLNCCs will be tested for robustness of our approach.