• Title/Summary/Keyword: Size of Particles

Search Result 3,996, Processing Time 0.033 seconds

Effects of Air Pressure on the Fabrication of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 주석산화물 나노분체 제조에 미치공기압력의 영향)

  • Yu, Jae-Keun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.690-696
    • /
    • 2011
  • In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from $0.1kg/cm^2$ to $3kg/cm^2$, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from $0.1kg/cm^2$ to $1kg/cm^2$, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to $3kg/cm^2$, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at $0.1kg/cm^2$, the average particle size is approximately 100 nm; when the air pressure increases up to $0.5kg/m^2$, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to $1kg/cm^2$, the surface structure is almost the same as in the case of $0.5kg/cm^2$, and the average particle size is around 80- 100 nm; when the air pressure increases up to $3kg/cm^2$, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from $0.1kg/cm^2$ to $0.5kg/cm^2$, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to $1kg/cm^2$ and $3kg/cm^2$, the XRD peak intensity increases, while the specific surface area also increases.

Characteristics of Ion Compositions of the Respirable Particles in Seoul (도시대기중 호흡성 먼지의 이온성분 거동 특성)

  • 신은상;강병욱
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.24-31
    • /
    • 1994
  • Aerosol size distribution were determined in Seoul by Anderson sampler from October 1989 to September 1991 for the major ionic species(SO$_{4}$$^{2-}$, NO$_{3}$$^{-}$, Cl$^{-}$, Na$^{+}$, Na$^{+}$, K$^{+}$, Ca$^{2+}$ and Mg$^{2+}$) and TSP( Total Suspended Particles ). The seasonal variations in concentrations and size distribution have been investigated. The size distributions of TSP and each of ionic species were bimodal throughout the year. The size distribution of these ions were divided as follows; (1) fine- mode dominant for SO$_{4}$$^{2-}$ and N%'. (2) coarse- mode dominant for NO$_{3}$$^{-}$, Cl$^{-}$, Ca$^{2+}$ and Mg$^{2+}$. (3) both- mode dominant for TSP.

  • PDF

Interpretation of the Chemical Transformation of Individual Asian Dust Particles Collected on the Western Coast of Korean Peninsula

  • Ma, Chang-Jin;Kim, Jong-Ho;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 2012
  • This paper is focused on the comprehensive and detailed interpretation for the chemical transformation of individual Asian dust (hereafter called "AD") particles during long-range transport from source regions to receptor area. A multi-stage particle sampler was operated at a ground-based site in Taean, Korea directly exposed to the outflow of air masses from China during AD period in April 2003. Both quantitative and qualitative analyses for size-classified individual particles were carried out by a microbeam X-ray fluorescence (XRF) method and a microbeam Particle Induced X-ray Emission (micro-PIXE), respectively. Among major characteristic elements, the elemental masses of soil derived components, sulfur, and chloride varied as a function of particle size showing the monomodal maximum with a steeply increasing at 3.3-4.7 ${\mu}m$ particle size. Although the details on chemical composition of AD particle collected on a straight line from source area to our ground-based site are needed, a large amount of Cl coexisted in and/or on AD particles suggests that AD particles collected in the present study might be actively engaged in chemical transformation by sea-salt and other Cl containing pollutants emitted from the China's domestic sources. Through the statistical analyses it was possible to classify individual AD particles into six distinct groups. The internally mixed AD particles with Cl, which has various sources (e.g., sea-salt, coal combustion origin HCl, gaseous HCl derived from the adsorption of acids to sea-salt, and Cl containing man-made particles) were thoroughly fractionated by the elemental spectra drivened by the double detector system of micro-PIXE.

Effect of Size and Morphology of Silica Abrasives on Oxide Removal Rate for Chemical Mechanical Polishing (기계화학적 연마용 실리카 연마재의 형상과 크기가 산화막 연마율에 미치는 영향)

  • Lee, Jinho;Lim, Hyung Mi;Huh, Su-Hyun;Jeong, Jeong-Hwan;Kim, Dae Sung;Lee, Seung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.631-635
    • /
    • 2011
  • Spherical and non-spherical silica particles prepared by the direct oxidation were studied for the effect of the particle size and shape of these particles on oxide CMP removal rate. Spherical silica particles, which have 10~100 nm in size, were prepared by the direct oxidation process from silicon in the presence of alkali catalyst. The 10 nm silica particles were aggregated by addition of an acid, an alcohol, or a silane as an aggregation inducer between the particles. Two or more aggregated silica particles were used as a seed to grow non spherical silica particles in the direct oxidation process of silicon in the presence of alkali catalyst. The oxide removal rate of spherical silica particles increased with increasing an average particle size for spherical silica abrasives in the oxide CMP. It further increased non-spherical particles, compared with the spherical particles in the similar average particle size.

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.298-302
    • /
    • 2012
  • Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.

The magnetic properties of the systems of the ultra-fine particles

  • Perov, N.S;Sudarikova, N.Yu.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.17-17
    • /
    • 2002
  • The magnetic effects connected to finite-size of the particles become dominant at transition of particles in region several nanometers and less [1]. At reduction of atom numbers in magnetic cluster (tens or hundreds atoms), along the classical features, essential appear the quantum phenomena resulting in spin transformation of magnetic structure, both with reduction of the size and at applying of an external magnetic field. (omitted)

  • PDF

Preparation of Micron Size Poly(n-Butyl Acrylate) Latex Particle by Sequential Seeded Emulsion Polymerization (연속적 Seed 유화중합법에 의한 마이크론 크기의 Poly(n-Butyl Acrylate) 라텍스입자 제조)

  • Kim, Jee-Hoon;Suh, Soong-Hyuck;Nam, Wan-Woo;Kim, Kyung-Chan;Kang, Shin-Won;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.889-894
    • /
    • 1999
  • Preparation of micron size polymer particles which have desired morphology, size, and structure by emulsion polymerization is very difficult due to coagulation of latex particles and formation of second generation particles. But there are attractive merits such as preparation of structural and functional polymer particles in seeded emulsion polymerization. Seeded emulsion polymerization of n-butyl acrylate(BA) was carried out to investigate the effects of stirring rate, reaction temperature, concentration of initiator, emulsifier, and cross-linking agent on the particle size and size distribution. By the combination of suitable reaction conditions, we succeeded in preparing $0.14{\sim}3.67{\mu}m$ diameter of poly(n-butyl acrylate)(PBA) particles using sequential seeded emulsion polymerization.

  • PDF

Particle Size, Morphology and Color Characteristics of C.I. Pigment Red 57:1 : 2. Effect of Salt Milling Process

  • Seo, Hee Sung;Lee, Hyun Kyung;Yoo, Eui Sang
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.245-260
    • /
    • 2015
  • The effect of salt milling process on the crystal size, morphology, and color characteristics of C.I. Pigment Red 57:1 was studied. The primitive morphology and color properties of the pigment after synthesis were studied in the former series work. The size and morphology of primary particles and the second aggregation features should be considered because they are very important to determine pigment quality. We compared the primary morphology of pigment particles before drying with the secondary aggregated morphology of pigment particles after drying and salt milling process. Morphological properties were investigated by particle size analysis, X-ray diffraction, and scanning electron microscopy and color measurement was carried out. Significant reduction in particle size as well as enhanced crystallite size after salt milling process was observed. This result might give a difference in color of the pigment, turning into brighter and more blue-toned red color. It was revealed that synthesis condition affect the morphology and color of the pigment even after milling. Increase in HCl concentration in the synthesis process enhanced crystal size and quality forming bluer-red pigments but an increase in $CaCl_2$ concentration resulted in more amorphous crystals forming darker-red pigments after salt milling.

Investigation of Nanoparticle Generation during Surface Decontamination by Low-Energy-Fluence Laser Ablation (저에너지 플루언스(fluence) 레이저 어블레이션(ablation)을 통한 표면오염제거과정에서의 나노입자의 생성에 관한 연구)

  • Lee, Doh-Won;Cheng, Meng-Dawn
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.199-199
    • /
    • 2003
  • During the cleanup of US Department of energy facilities, contaminated materials, toxic and hazardous radionuclides (e.g., Th, Cs, and U) and heavy metals (e.g., Cr, Hg, Pb, and Ni)-laden ultrafine particles are generated. The size of the particles is up to about 200 nm. Understanding of the production of these nanometer size particles is critical in determining the surface cleaning efficiently. (omitted)

  • PDF

Ignition Behavior of Single Coal Particles From Different Coal Ranks at High Heating Rate Condition

  • Lee, Dongfang;Kim, Ryang Gyoon;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.111-114
    • /
    • 2012
  • The ignition behavior of single coal particles of five kindes of coal with different ranks (low volatile bituminous, low volatile sub-bituminous, high volatile bituminous, lignite) with particle size of $150-200{\mu}m$ was investigated at high heating rate condition. Particles were injected into a laminar flow reactor and the ignition behavior was observed with high speed cinematography. Sub-bituminous were observed to ignite homogeneously; however, low volatile bituminous coal and lignite undergo fragmentation prior to igntion. The observation was analyzed with previous work.

  • PDF