• 제목/요약/키워드: Size of Particles

검색결과 3,996건 처리시간 0.034초

In-situ 공정에 의한 복합솔더 제조 (Manufacturing of Composite Solders by an In-situ Process)

  • 황성용;이주원;이진형
    • 한국주조공학회지
    • /
    • 제22권1호
    • /
    • pp.35-41
    • /
    • 2002
  • To improve the reliability of solder joints, a composite solder which consists of solder matrix and intermetallic reinforcements was manufactured by a new method. The cast ingot of Sn-6.9Cu-2.9Ag alloy had primary Cu6Sn5 intermetallics in the form of dendrites. After rolling the ingot, the intermetallic dendrites were crushed into fine particles and distributed uniformly throughout the solder matrix. As the rolled strips became thinner, the average size of the crushed particles reached a critical size which did not decrease any more by further rolling. The critical size was nearly the same as the average width of intermetallic dendrite trunk. The crushed intermetallic particles did not melt and remained in solid state during reflow soldering due to their high meltingterm-perature. The coarsening and gravitational segregation of the particles were observed during reflow soldering.

OPC(광학적 입자 계수기)로 측정한 2001년 서울지역 에어로졸의 입경 분포 (Characteristics of Aerosol Size Distribution from OPC Measurement in Seoul, 2001)

  • 정창훈;전영신;최병철
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.515-528
    • /
    • 2003
  • The characteristics of one year observation aerosol data in Seoul, 200 I was studied using an OPC (Optical Particle Counter). The size resolved aerosol number concentrations of 0.3 ∼ 25 11m were measured. The results were compared with PM$_{10}$ mass concentration data under various meteorological conditions including dust and precipitation events. For fine particles whose diameter is less than 2.23 ${\mu}{\textrm}{m}$, the number concentration increases in the early morning which is considered due to transportation. while the coarse mode particles increase during daytime. This increase can be explained as local sources and human activities near sampling site. Hourly averaged data show that there exists diurnal variation. Generally, PM$_{10}$ data showed a similar tendency with OPC data. The size resolved OPC data showed that the particles of 0.5 ∼ 3.67 ${\mu}{\textrm}{m}$ are positively correlated with PM$_{10}$ data. The accumulated volume fraction of size resolved aerosol concentration in 0.5 ∼ 10 ${\mu}{\textrm}{m}$ showed that 0.5 ∼ 2.23 ${\mu}{\textrm}{m}$ particles occupied 59.2% of total aerosol volume of 0.5 ∼ 10 ${\mu}{\textrm}{m}$./TEX>.

Biocompatible Dispersion Methods for Carbon Black

  • Kim, Hwa;Park, Kwangsik;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • 제28권4호
    • /
    • pp.209-216
    • /
    • 2012
  • The biological activity of particles is largely dependent on their size in biological systems. Dispersion in the aqueous phase has been both a critical impediment to and a prerequisite for particle studies. Carbon black has been used as a surrogate to investigate the biological effects of carbonaceous particles. Here, biocompatible methods were established to disperse carbon black into ultrafine and fine particles which are generally distinguished by the small size of 100 nm. Carbon black with a distinct particle size, N330 and N990 were suspended in blood plasma, cell culture media, Krebs-Ringer's solution (KR), or physiological salt solution (PSS). Large clumps were observed in all dispersion preparations; however, sonication improved dispersion - averaged particle sizes for N330 and N990 were $85.0{\pm}42.9$ and $112.4{\pm}67.9$ nm, respectively, in plasma; the corresponding sizes in culture media were $84.8{\pm}38.4$ and $164.1{\pm}77.8$ nm. However, sonication was not enough to disperse N330 less than 100 nm in either KR or PSS. Application of Tween 80 along with sonication reduced the size of N330 to less than 100 nm, and dispersed N990 larger than 100 nm ($73.6{\pm}28.8$ and $80.1{\pm}30.0$ nm for N330 and $349.5{\pm}161.8$ and $399.8{\pm}181.1$ nm for N990 in KR and PSS, respectively). In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) exhibited little effect. Electron microscopy confirmed the typical aciniform structure of the carbon arrays; however, zeta potential measurement failed to explain the dispersibility of carbon black. The methods established in this study could disperse carbon black into ultrafine and fine particles, and may serve as a useful model for the study of particle toxicity, particularly size-related effects.

대기압 반응로 내 코로나 이온을 이용한 나노입자 형상의 제어 (Corona ion Assisted Nano-Particle Morphology Control in an Atmospheric Pressure Furnace Reactor)

  • 안강호;윤진욱;김영원
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.710-715
    • /
    • 2002
  • The spherical nonagglomerated and uniform nanometer-size SiO$_2$particles are synthesized by the injection of TEOS vapor, irons and reaction gas in a furnace. Ions are generated by corona discharge and these ions charge SiO$_2$particles. As a result, spherical, nonagglomerated and ultrafine particles are generated in various conditions. Their morphology, charging portion and size distribution are examined by using TEM, ESP and SMPS. As the applied voltage of electrode changes from 0 to 5.0 kV, it is observed that the melon diameter of SiO$_2$particle decreases from 94 nm to 42 nm.

Experimental Investigation on Finasteride Microparticles Formation via Gas Antisolvent Process

  • Najafi, Mohammad;Esfandiari, Nadia;Honarvar, Bizhan;Aboosadi, Zahra Arab
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.455-466
    • /
    • 2021
  • Micro and nanoparticles of Finasteride were prepared by gas-antisolvent method. The influence of process parameters such as pressure (100, 130 and 160 bar), temperature (308, 318 and 328 K) and solute concentrations (10, 25 and 40 mg/ml) on mean particle size was studied by Box-Behnken design. As ANOVA results indicated, the highest influence in production of smaller particles was attributed to the pressure. Optimum condition leading to the smallest particle size was as follows: initial solute concentration, 10 mg/ml; temperature, 308 K and pressure, 160 bar. The particles were evaluated with FTIR, SEM, DLS, XRD as well as DSC. The analyses revealed a size decrease in the precipitated Finasteride particles (232.4 nm, on mean) via gas-antisolvent method, as compared to the original particles (55.6 ㎛).

Nano-scale Ink Particles for Electrophoretic Display with High Optical Density

  • Choi, Yong-Gir;Cho, Young-Tae;Park, Seung-Chul;Lee, Yong-Eui;Kim, Chul-Hwan;An, Chee-Hong;Kim, Hyoung-Sub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.865-867
    • /
    • 2009
  • In this paper, we describe the fabrication of nano-scale ink particles with narrow size distribution to offer high optical density in electrophoretic display applications. Charged white ($TiO_2$ and polyester) and black (carbon black and polyester) nano size ink particles in size range of 200 ~ 700nm were made successively using modified non-aqueous base emulsion process. The EPD showed white reflectance of 58% and saturation voltage of ${\pm}10V$.

  • PDF

직경 10-${\mu}$m 이하의 야누스 입자 생성 (Generation of Janus particles smaller than 10-${\mu}$m in diameter)

  • 안상훈;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.679-682
    • /
    • 2008
  • The particle which has two different characteristics on both sides is called Janus particle which is emerging as a key material in microscale transport systems. For example, if one hemisphere has polarity and the other does not, then nonpolar sides would attract each other so that a complex cluster is formed. Thus, this fascinating material can be used as an element of twisting ball panel display, complex micro-scale clusters, drug delivery unit, and active detecting beads. The keywords in developing Janus particle are size and uniformity. Former researches solved uniformity but downsizing still remains a problem. There are three methods to generate small size particles in microchannels: co-flowing, cross-flowing, and elongational flows. In this research, we generate Janus particles smaller than 10-${\mu}$m in diameter using elongational flow in microchannels. And we use UV initiator with Hydrogen UV source to solidify micro size particles. One hemisphere of the particle is coated with rhodamin for visualization.

  • PDF

粗大粒子가 大氣淨遊粉塵에 주는 負荷 (A Study on the Coarse Particles Burden to Aerosol in Seoul Area)

  • 이윤재;김희강
    • 한국대기환경학회지
    • /
    • 제1권1호
    • /
    • pp.71-82
    • /
    • 1985
  • The effect on the particulate matters in the atmosphere was investigated in Seoul area from March, 1984 to Aprill, 1985. Aerosols were collected by filters on nine stages Andrsen Air Sampler, and size distribution and total concentration of the aerosols, Fe and Pb were measured. In spring with Yellow Sand the concentration of particles in aerosols was 185.55$\mug/m^3$ and CP/TA was 65.9%. But in spring without Yellow Sand those of particles was 135.45$\mug/m^3$ and CP/TA was 58.6%. Accordingly the concentration of coarse particles with Yellow Sand was higher than without them in Spring. Above results indicate that in Seoul Area the main source of air pollution originated from natural burdens, especially from soil. The concentration of Pb was similarly valued through both seasons in Seoul area but fine particles valued above coarse particles. On the other hand, in urban area, the natural and anthropogenic sources have influenced on the concentration of Pb. With referred to particle size distribution for Fe, the concentration of coarse particles was 0.168$\etag/m^3$ (CP/TA: 74.3%) in Spring with Yellow Sand, 0.096$\mug/m^3$ (CP/TA: 71.6%) without Yellow Sand and 0.083$\mug/m^3$ (CP/TA: 67.4%) in winter, respectively. Compared with fine particles, all of them were higher. It indicated that the origin of coarse particles in urban air was not related to anthropogenic source. The concentration of Fe was influenced by Yellow Sand and contributed to air pollution.

  • PDF

$Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향 (Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites)

  • 이창주;김득중
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

수열합성법에 의한 Zinc Selenide 나노 분말 합성 및 미세구조 특성 연구 (Fabrication and Characterization of Nano-Sized ZnSe Powders by Hydrothermal Process)

  • 김미소;홍현선
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.459-465
    • /
    • 2017
  • Nano-sized Zinc selenide (ZnSe) powder was successfully synthesized using Zn and Se precursors in a hydrothermal process. Temperature for the synthesis was varied from $95^{\circ}C$ to $180^{\circ}C$ to evaluate its influence on the microstructural properties of the synthetic particles. ZnSe powder thus fabricated was characterized using various analytical tools such as SEM, XRD, TEM and UV-Vis methods. Two types of ZnSe particles, that is, the precipitated particle and the colloidal particles, were identified in the analysis. The precipitated particles were around 100 nm in average size, whereas the average size of the colloidal particles was around 20 nm. The precipitated particles made at $150^{\circ}C$ and $180^{\circ}C$ were found to be a single phase of ZnSe; however, an inhomogeneous phase was obtained at the lower synthesis temperature of $95^{\circ}C$, suggesting that the temperature for the synthesis should be over $100^{\circ}C$. The precipitated particles were inactive in the UV-Vis absorption investigation, whereas the colloidal particles showed that absorptions occurred at 380 nm in the UV-Vis spectrum.