• Title/Summary/Keyword: Size conductor cables

Search Result 13, Processing Time 0.026 seconds

A Study on the Economical Design of Airport Low-Voltage Feeder Which is considering the Temperature Character (온도특성을 고려한 공항 저압간선의 경제적인 설계기법에 관한 연구)

  • 최홍규;조계술;송영주
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.119-126
    • /
    • 2003
  • The size of low voltage level conductor cables can be installed with a long length just like a aviation field, shall be determined for considering the ampacity of cable and the drop of voltage for the power system. Therefore, The size of the conductor cables may be larger one for considering the tolerable voltage drop comparatively, although the allowable ampacity of the conductor cables may have a margin in comparison with the rated full load current In this case, the conductor cables' allowable ampacity will be very larger than the rated full load current and the generated heat of the conductor will be relatively downed. The conductor cables' alternating current resistance corrected with the maximum allowable temperature of the conductors, has been applied on the general formula for the calculating the voltage drop in determinating the size of low voltage level conductor cables, and the resistance is larger than the resistance corrected with the actual temperature of the conductor cables. This paper was studied for the purpose of the conductor resistance corrected with the actual temperature rise of the conductor and address the economic design formula so that this studies shall minimize the errors which can be occurred in comparison with the general formula and which can be applied in design work for determining the size of low voltage level conductor cables.

A Study on the Economical Design of Low-Voltae feeder Considering the temperature character (온도특성을 고려한 저압간선의 경제적인 설계기법에 관한 연구)

  • 최홍규;조계술
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.349-354
    • /
    • 2002
  • A size of low-voltage conductor cables is determined by the voltage drop of a system, the cable impedance and the cable ampacity based on temperature correction factor in accordance with the condition of cable installation. Therefore, the proper temperature correction factor according to the condition of cable installation should be applied to determining the cable ampacity and also the skin effect and proximity effect, along with the kind and size of conductor and the condition of cable installation, should be properly considered to analyze the proper value of resistance and the reactance of the conductors. This paper addresses the systematic design flow for determining the size of low voltage level conductor cables in calculating the temperature character where error should be minimized in comparison with the general formula and which can be applied in design work for determining the size of conductor cables.

  • PDF

Algorithm for the Low-Voltage Feeder Design in Consideration of Voltage Drop (전압강하를 고려한 저압간선의 설계 알고리즘)

  • 고영곤;최홍규;조계술
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2002
  • A size of low-voltage conductor cables is determined by the voltage drop of a system the cable impedance and the cable ampacity based on temperature correction factor in accordance with the condition of cable installation. Therefore, the proper temperation correction factor according to the condition of cable installation should be applied to determining the cable ampacity and also the skin effect and proximity effect, along with the kind and size of conductor and the condition of cable installation, should be properly considered to analyze the proper value of resistance and the reactance of the conductors. This paper addresses the systematic design flow for determining the size of low voltage level con여ctor cables in calculating the voltage drop of a power system and proposes a new improved the calculating formula what error should be minimized in comparison with the general formula and which can be applied in design work for determining the size of conductor cables.

A Study on the optimal conductor size selection of power cables considering the ampacity (I) (허용전류 관점에서의 전력케이블 최적 도체 크기 선정에 관한 연구)

  • Jeong, S.H.;Choi, S.B.;Nam, K.Y.;Ryoo, H.S.;Lee, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.396-398
    • /
    • 2005
  • IEC 60287-3-2 standards suggests the selection method of economic conductor size for power cables. This method deals solely with the economic choice of conductor size based on joule losses. This paper introduces the method and example study which is proposed by IEC standards.

  • PDF

Influence of Current Distributions on AC Loss Characteristics in a 3-conductor (전류분포가 3본-도체의 교류손실 특성에 미치는 영향)

  • 정재훈;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.206-209
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$_{c}$ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The ac loss characteristics in the conductor have experimentally investigated. The loss tests indicate that the ac loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.e.

  • PDF

Influence of Current Distributions on AC Loss Characteristics in a 3-conductor (전류분포가 3본-도체의 교류손실 특성에 미치는 영향)

  • 정재훈;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.7-10
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$_{c}$ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The ac loss characteristics in the conductor have experimentally investigated. The loss tests indicate that the ac loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.e.

  • PDF

Influence of Current Distributions on Critical Current and AC Loss Characteristics in a 3-conductor (전류분포가 3본-도체의 임계전류/교류손실 특성에 미치는 영향)

  • 류경우;최병주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.418-423
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$\sub$c/ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The critical current and AC loss characteristics in the conductor have experimentally investigated. The results show that for uniform current distributions the conductor's critical current is proportional to the critical current of the Bi-2223 tape to which a voltage lead is attached. However it depends on the current non-uniformity parameter in the conductor rather than the tape's critical currents for nonuniform current distributions. The loss tests indicate that the AC loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.

Influence of Tape's Critical Currents and Current Distributions on AC Loss Measurement in a Multi-tape Conductor (임계전류 및 전류분포가 다중테이프 초전도도체의 교류손실 측정에 미치는 영향)

  • Ryu Kyung Woo;Ma Y. H.;Choi Byoung Ju;Hwang S. D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.47-50
    • /
    • 2005
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables, which consist of a number of lli 2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. In this work we have prepared a multi-tape conductor composed of Bi-2223 tapes. The at losses of the conductor have experimentally investigated. The loss tests indicate that the effect of tapes critical currents on AC loss measurement in the multi tape conductor is negligible only if currents in the tapes flow uniformly Moreover, the measured tosses of the conductor are in good agreement with the sum of the transport losses in the tapes. However, in the case of non-uniform current distributions, the measured AC losses considerably depend on the current distribution parameter of the positioning of a voltage lead. Thus special cautions should be needed for the measurement of the true AC losses in the short power cable samples.

A Study on Optimal Installation Method of Earth Continuity Conductor on Underground Power Cable Systems (지중송전선로 병행지선 최적 설치 방안에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won;Yoon, Jong-Keon;Kim, Yang-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1689-1694
    • /
    • 2009
  • In a previous paper, the characteristics of ECC (earth continuity conductor) have been analysed for reducing the level of induced sheath voltage considering the dimension and position of ECC, the spacing between ECC and three phase cables, and the use of two ECC conductors at the single point boned section of underground power cable system. From these results, the study conditions for optimal installation has been selected such as installation section, conductor size and etc. In this paper, 5 cases which are set by possible installation conditions are tested based on previous research results. Finally, the optimal installation method of ECC is selected on underground power cable systems.

The Application of 154kV OF/XLPE Transition Joint (154kV OF/XLPE 케이블 이종접속함의 실선로적용)

  • Hwang, Soon-Chul;Choi, Jong-Hyeon;Oh, Jong-Ok;Goh, Chang-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.274-276
    • /
    • 1991
  • Since the successful development of 154kV XLPE cable in 1983, its commercial use has been drastically expanded due to technical advantages and high performance of insulation, Futhermore, the large conductor size of 1200ml and 2000ml has been mainly employed in Korea for the purpose of meeting the bulk power demand in urban area. However, it is highly required to solve the problems which can be occured at the level of the joints between the cables of different type such as between existing OF and XLPE cables.

  • PDF