• Title/Summary/Keyword: Size combination

Search Result 1,167, Processing Time 0.025 seconds

Microstructure and Strengthening Behavior in Squeeze Cast Mg-Zn by Addition of Zr (용탕단조 Mg-Zn-Zr 합금의 미세조직 및 강화기구)

  • Oh, Sang-Sub;Hwang, Young-Ha;Kim, Do-Hyang;Hong, Chun-Pyo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • Microstructural characteristics and strengthening behavior in Mg-5wt%Zn-0.6wtZr alloys have been investigated by a combination of optical, secondary electron and transmission electron microscopy, differential thermal analysis, and hardness and tensile, creep property measurements. The result have been compared with those of Mg-5wt%Zn alloys. The as-squeeze cast microstructure consisted of dendrite ${\alpha}-Mg$, interdendrite or intergranular $Mg_7Zn_3$ and fine dispersoids of $ZnZr_2$. The size of secondary solidification phases in Mg-5wt%Zn-0.6wtZr alloys was significantly smaller than that of the Mg-5wt%Zn alloys due to the existence of fine dispersoid of $ZnZr_2$ which also effected the refinement of grain size. TEM study showed that the main cause of age hardening is formation of fine rodlike ${\beta}_1\;'$ precipitates as well as fine $ZnZr_2$ dispersoids. Due to the observed microstructural characteristics mechanical propeties of Mg-5wt%Zn-0.6wtZr alloys was found to be superior to those of Mg-5wt%Zn alloys.

  • PDF

Clinical study on one case of a patient with chronic PID (만성골반염(慢性骨盤炎) 환자에 대한 치험일례(治驗一例))

  • Seo, Ji-Young;Kim, Yoon-Sang;Lim, Eun-Mee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.15 no.4
    • /
    • pp.218-227
    • /
    • 2002
  • Pelvic Inflammatory Disease(PID) is a spectrum of inflammatory disorders of the female genital tract involving at least the endrometrium and may include the fallopian tubes, ovaries, and pelvic cavity. Women with PID acutely experience pain and are at risk for sepsis; however, the long-term complications such as chronic pelvic pain, organic changes like chronic salpingitis, adhesions, etc., and the significant increases in ectopic pregnancy and infertility are more important and hard to control. This study is about one patient who has chronic PID with inflammatory pelvic mass. The patient was treated with retention enema therapy which use herbs effective for reducing inflammation, resolution abdominal mass, promoting blood circulation. Also, treated with herbal medication of Danchisoyosan(丹梔逍遙散) and Moxibution at Zhongwan(中脘), Guanyuan(關元). After total treatment for three months, the patient's symptoms are improved and the size of inflammatory pelvic mass is reduced. This results indicates that the combination treatment, especially the retention enema therapy is effective on reducing symptoms of PID and the size of secondary inflammatory organic changes.

  • PDF

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Choubey, O.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.569-573
    • /
    • 2013
  • In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.

Design of Class E Insulation Induction Motor (E종 절연 유도 전동기의 설계)

  • Sung Won Lee
    • 전기의세계
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 1967
  • From the discovery of Alago's disk, a number of trials and efforts have been concentrated on a small-sized and light-weighted induction motor. They have devoted themseleves, however, mainly to a improvement of cooling effect, a proper weight-distribution of copper and iron and desirable number of slots. In consequence, such an effort restricted only to the field of design, has resulted in unsatisfactory developments in the insulating materials consisting of the main parts of an induction motor. The quality of fibre and paper which are used as class-A insulation materials with their "compound" and "varnish" has been increased to some extent. Similarly Class-B insulation materials like asbest mica has been almost a combination of inorganic and binding materials. But nowadays synthesic chemistry is making a remarkable progress. So it comes possible for us to have silicon resin and other good ones of similar charateristics. And even a thin silicon resin insures us to get excellent heat-pro f and insulation, so a better space factor and cost-down in motor design have come possible in most advanced nations of the world, but not in our country. Furthermore, a consideration of productivity and economy in manufacturing process has been neglected by a majority of engineers. This is more unpleasant und more undesirable. I think this rational method of induction motor design using new synthesic resin will devote in making your productivity and economy better. And the nation-wide standard value of electric motor size is sited here. size is sited here.

  • PDF

Synthesis of Homogeneous La0.8Sr0.2CrO3 Powders Using an Ultrasonic Spray Pyrolysis Method

  • Kim, Chang-Sam;Hwang, Seong-Ik;Kim, Shin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.148-150
    • /
    • 2007
  • A process to synthesize $La_{0.8}Sr_{0.2}CrO_3$ (LSC), which is a promising material for use as a separator in a soild oxide fuel cell, is investigated in this study. LSC powders without secondary Phases could be synthesized with ultrasonic spray pyrolysis and a heat treatment at $1200^{\circ}C$ for 20 h; however, it showed an average diameter of $0.6{\mu}m$ with a wide particle size distribution. On the other hand, LSC powders synthesized with spray pyrolysis at $800^{\circ}C$, heat-treated at $900^{\circ}C$ for 5 h, ball-milled and finally heat-treated again at $1200^{\circ}C$ for 20 h showed a smaller average diameter of $0.3{\mu}m$ and narrower size distribution. Very few particles above $0.5{\mu}m$ were found. Thus, a proper combination of the heat treatment and milling process after spray pyrolysis it determined to be very important in synthesizing fine and uniform LSC perovskite powders.

Combining Local and Global Features to Reduce 2-Hop Label Size of Directed Acyclic Graphs

  • Ahn, Jinhyun;Im, Dong-Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.201-209
    • /
    • 2020
  • The graph data structure is popular because it can intuitively represent real-world knowledge. Graph databases have attracted attention in academia and industry because they can be used to maintain graph data and allow users to mine knowledge. Mining reachability relationships between two nodes in a graph, termed reachability query processing, is an important functionality of graph databases. Online traversals, such as the breadth-first and depth-first search, are inefficient in processing reachability queries when dealing with large-scale graphs. Labeling schemes have been proposed to overcome these disadvantages. The state-of-the-art is the 2-hop labeling scheme: each node has in and out labels containing reachable node IDs as integers. Unfortunately, existing 2-hop labeling schemes generate huge 2-hop label sizes because they only consider local features, such as degrees. In this paper, we propose a more efficient 2-hop label size reduction approach. We consider the topological sort index, which is a global feature. A linear combination is suggested for utilizing both local and global features. We conduct experiments over real-world and synthetic directed acyclic graph datasets and show that the proposed approach generates smaller labels than existing approaches.

Microstructure and Properties of HIPped P/M High Speed Steels (열간등압소결 된 고속도 공구강의 미세조직 및 기계적 특성)

  • Gang Li;Park, Woojin;S. Ahn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.35-35
    • /
    • 1997
  • High$\cdot$speed steels (HSS) with a combination of good wear resistance and toughness are finding new, non-cutting applications such as rolls and rollers. In this paper, the research interests are focused on the microstructural evolution of a SMo-6W series high speed steel during HIPping and the effect of HIPping process parameters on its microstructure and properties. HIPping process variables includes; temperature, pressure and hold time. The microstructures of the HIPped HSS were examined by SEM, OM and X-ray diffraction whereas the properties measured were the relative density, hardness, and bend strength at room temperature. In HIPped materials, MC and M6C were the major carbides formed in a matrix of martensite. The effect of powder size on the microstructure and mechanical properties of HIPped materials was insignificant. However, HIPping temperature and hold time strongly affected the carbide size and distribution. The results show that at proper HIPping temperature and pressure conditions, the final products approach the full density ( > 99% RD). The particle boundaries were completely eliminated without an eminent microstructural coarsening. The bend strength was about 2.3 Gpa, which is superior to cast HSS. At excessive HIPping temperatures, rapid carbide coarsening occurred, thus deteriorating the mechanical properties of the P/M steels.

  • PDF

Comparison of the filtration performance by different media in pretreatment of seawater desalination by reverse osmosis (여재 종류에 따른 역삼투법 해수담수화 시설 전처리 여과공정의 성능비교)

  • Kim, Seung-Hyun;Yoon, Jong-Sup;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.215-222
    • /
    • 2009
  • This study compares the performance of the filters with various media in pretreatment of seawater desalination by reverse osmosis. For this purpose, Masan bay seawater is used as raw water. The filter performance is evaluated by the filtrate quality and the head loss development. Five media is selected in this study: anthracite, $Filtralite^{(R)}$, sand, Pumice, $AFM^{(R)}$. These media are used in combination for dual media filter and alone for mono media filter. The comparison results show that NC0.8-1.6 is the best $Filtralite^{(R)}$. The dual media filter of NC0.8-1.6 and sand outperformed other filters in particle removal. The dual media filter of anthracite and sand showed good performance in organic removal. The mono media filter of Pumice produced the similar filtrate quality as the mono media filter of sand although the effective size of Pumice is considerably greater than that of sand. Due to big size, head loss development is maintained slow in the filtration of Pumice.

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

Magnetic separation device for paramagnetic materials operated in a low magnetic field

  • Mishima, F.;Nomura, N.;Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.19-23
    • /
    • 2022
  • We have been developing a magnetic separation device that can be used in low magnetic fields for paramagnetic materials. Magnetic separation of paramagnetic particles with a small particle size is desired for volume reduction of contaminated soil in Fukushima or separation of iron scale from water supply system in power plants. However, the implementation of the system has been difficult due to the needed magnetic fields is high for paramagnetic materials. This is because there was a problem in installing such a magnet in the site. Therefore, we have developed a magnetic separation system that combines a selection tube and magnetic separation that can separate small sized paramagnetic particles in a low magnetic field. The selection tube is a technique for classifying the suspended particles by utilizing the phenomenon that the suspended particles come to rest when the gravity acting on the particles and the drag force are balanced when the suspension is flowed upward. In the balanced condition, they can be captured with even small magnetic forces. In this study, we calculated the particle size of paramagnetic particles trapped in a selection tube in a high gradient magnetic field. As a result, the combination of the selection tube and HGMS (High Gradient Magnetic Separation-system) can separate small sized paramagnetic particles under low magnetic field with high efficiency, and this paper shows its potential application.