• 제목/요약/키워드: Size Inspection

검색결과 643건 처리시간 0.02초

비파괴산업 분야 방사선작업종사자 직장교육을 위한 사용자 환경 기반 혼합현실(MR) 교육훈련 시스템 개발 (A Development of a Mixed-Reality (MR) Education and Training System based on user Environment for Job Training for Radiation Workers in the Nondestructive Industry)

  • 박형후;심재구;박정규;손정봉;권순무
    • 한국방사선학회논문지
    • /
    • 제15권1호
    • /
    • pp.45-54
    • /
    • 2021
  • 본 연구는 혼합현실을 기반으로 하는 비파괴 분야의 교육용콘텐츠를 만들기 위해 시행되었다. 현재 방사선 분야에는 교육용 혼합현실 기반 교육용 콘텐츠는 거의 없는 실정이다. 그리고 비파괴검사분야는 작업 환경이 열악하고, 종사자 수도 한 업체당 직원 수가 10인 이하인 곳이 많고, 교육적 인프라도 잘 구축되어 있지 않다. 강의식으로 전달만 하는 실습교육과 안전교육이 시행되고 있다. 이를 해결하기 위해 혼합현실을 기반으로 한 비파괴 종사자 교육용 콘텐츠를 개발하게 되었다. 이 콘텐츠는 Microsoft사의 HoloLens 2 HMD 디바이스를 기반으로 개발되었고, 1280⁎720의 해상도를 기준으로 제작되었고, 디바이스마다 해상도가 달라 Anchor의 Left, Right, Bottom, TOP위치를 맞추어 Side를 제작하였고, 이미지가 큰 것은 Atlas의 크기에 영향을 미치기 때문에 배경화면이나 상단 바와 같이 부피가 큰 것은 UITexture로 대체하여 제작되었다. UI Widget Wizard에서는 Label, Buttom, ScrollView, Sprite를 제작하였다. 본 연구는 종사자에게 현장감 있는 교육내용을 제공하고, 자기 주도적인 교육을 가능하게 하고, 현실을 바탕으로 한 3D 입체영상으로 교육할 수 있어 흥미와 몰입도 있는 교육을 시행할 수 있다. 혼합현실에서 제공되는 영상을 통해 현실세계와 가상현실 간에 상호작용을 통해 학습자가 직접 사물을 조작할 수 있어 학습자의 학습 능률을 높일 수 있다. 또한 혼합현실 교육을 시행하면 시간과 장소에 구해를 받지 않아 코로나 시대에 비대면 학습 콘텐츠로 큰 역할을 할 수 있을 것으로 사료된다.

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.

시스템분석(分析)에 의(依)한 삼림수확조절(森林收穫調節)에 관(關)한 연구(硏究) (A Study on the Forest Yield Regulation by Systems Analysis)

  • 조응혁
    • 농업과학연구
    • /
    • 제4권2호
    • /
    • pp.344-390
    • /
    • 1977
  • 본(本) 연구(硏究)는 계획기간내(計劃期間內)의 재적수확량(材積收穫量)을 최대화(最大化)하고 각분기(各分期)의 수확량(收穫量)과 수확면적(收穫面積)을 일정(一定) 범위(範圍)로 제약(制約)하여 계획기간내(計劃期間內)의 보속수확(保續收穫)을 도모(圖謀)하는 동시(同時)에 후계림(後繼林)의 법정영급배치(法正令級配置)가 유도(誘導)될 수 있는 적정수확안(適正收穫案)을 선형계획법(線型計劃法)에 의하여 선정(選定)하고, 제약량(制約量)의 변화(變化)가 총수확량(總收穫量) 및 분기별(分期別) 수확량(收穫量)과 수확면적(收穫面積)에 미치는 영향(影響)을 구명(究明)하는데 목적(目的)이 있다. 서울 대학교(大學校) 농과대학(農科大學) 부속연습림중(附屬演習林中) 개벌작업급(皆伐作業級)에 속하는 219개(個) 소반(小班)을 대상(對象)으로 하였으며, 이 삼림(森林)은 영급구성면(令級構成面)에서 볼 때 유영급(幼令級) 임분(林分)이 많다는 점(點)에서 전국(全國) 삼림(森林)을 대표(代表)한다고 할 수 있다. 본(本) 연구(硏究)에서는 한 분기년수(分期年數)를 5년(年), 계획기간(計劃期間)을 10분기(分期), 1영급(令級)을 5영개(令皆)로 하였으며, 벌채영급(伐採令級)의 범위(範圍)는 5~9영급(令級)이다. 한편, 후계림(後繼林)은 현실림(現實林)이 수확(收穫)되는 즉시 조림(造林)되고, 미립목지(未立木地)는 1분기내(分期內)에 조림(造林)되며 다음 벌기(伐期)까지 충분(充分)한 입목도(立木度)가 이루어지는 것으로 전제(前提)하였다. 소반(小班)을 벌구(伐區)로 하여, 각벌구(各伐區)가 계획기간내(計劃期間內)에 벌채(伐採)될 수 있는 모든 가능(可能)한 대체수확안(代替收穫案)을 그의 영급(令級)에 따라 작성(作成)하고, 여기에 현실림(現實林)과 후계림(後繼林)의 벌기예상수확량(伐期豫想收穫量)을 대입(代入)하여 각대체안(各代替案)의 계획(計劃) 기간내(期間內) 수확량(收穫量)($V_{i,\;k}$)을 산정(算定)하였다. 이때 각벌구(各伐區)의 벌기예상수확량(伐期豫想收穫量)은 기존(旣存) 임분수확표(林分收穫表)와 산림조사부(山林調査簿) 자료(資料)를 이용(利用)하는 범위내(範圍內)에서 추정(推定)하였으며, 각벌구(各伐區)에 소속(所屬)되는 대체수확안중(代替收穫案中)에서 $V_{i,\;k}$가 가장 큰 수확안(收穫案)을 적정수확안(適正收穫案)으로 선정(選定)하였다. 우선 제약조건(制約條件)이 없을 때의 적정수확안(適正收穫案)을 선정(選定)하여 분기별(分期別) 수확량(收穫量)과 수확면적(收穫面積), 총수확량(總收穫量)을 계산(計算)한 다음, 이를 기준(基準)으로 하여 분기별(分期別) 수확량(收穫量)의 상한(上限)($V_{j-max}$)과 하한(下限)($V_{j-min}$) 및 수확면적(收穫面積)의 상한(上限)($A_{j-max}$)과 하한(下限)($A_{j-min}$)을 결정(決定)하였다. 이러한 여러가지 제약조건하(制約條件下)의 적정수확안(適正收穫案)은 LP수확조절(收穫調節)모델을 유도(誘導)하여 선정(選定)하였으며, 제약조건(制約條件) 및 벌채영급범위(伐採令級範圍)의 변화(變化)가 총수확량(總收穫量)에 미치는 영향(影響)을 분석(分析)하고자 감응도분석(感應度分析)을 실시(實施)하였다. 본(本) 연구(硏究) 결과(結果)를 요약(要約)하면 다음과 같다. 1. 제약조건(制約條件) 없이 적정수확안(適正收穫案)을 선정(選定)한 결과(結果), 수확면적(收穫面積)이 분기별(分期別)로 큰 차이(差異)를 보였다. 즉, 총수확량(總收穫量)의 68.8%가 10분기(分期)에 편재(偏在)되어 있고 6~7분기(分期)에는 전(全)혀 수확량(收穫量)이 없으며, 분기별(分期別) 수확면적(收穫面積)도 이와 유사(類似)한 경향(傾向)을 보였다. 이와 같이 분기별(分期別) 수확량(收穫量) 및 수확면적(收穫面積)에 차이(差異)가 많은 것은 현실림(現實林)의 영급구성(令級構成)과 입목축적(立木蓄積)이 대단히 불규칙(不規則)하기 때문이다. 2. 수확량(收穫量)과 수확면적(收穫面積)의 분기별(分期別) 변동폭(變動幅)을 줄이면서 계획기간내(計劃期間內)의 재적수확량(材積收穫量)을 최대화(最大化)하고자, LP수확조절(收穫調節) 모델에 의하여 $A_{min}=150ha$ $A_{max}=400ha$, $V_{min}=5,000m^3$, $V_{max}=50,000m^3$일 때의 적정수확안(適正收穫案)을 선정(選定)한 결과(結果), 대체(大體)로 5분기(分期) 이후(以後)부터 보속수확(保續收穫)과 법정영급배치(法正令級配置)가 가능(可能)하게 되었다. 3. LP수확조절(收穫調節)모델에 간벌계획(間伐計劃)을 포함(包含)시켜 최적해(最適解)를 구(求)하면, 총수확량(總收穫量)이 증가(增加)함은 물론, 간벌계획(間伐計劃)을 포함(包含)시키지 않았을 경우(境遇)에 비하여 분기별(分期別) 보속수확(保續收穫)의 실현(實現)에 유리(有利)한 적정수확안(適正收穫案)을 선정(選定)해 주는 효과(效果)가 있다. 4. 보속수확(保續收穫)과 법정영급배치(法正令級配置)가 실현(實現)될 수 있는 시기(時期)는 제약량(制約量)의 강도(强度)가 높아짐에 따라서 빨라지며, 분기별(分期別) 수확량(收穫量)은 수확면적(收穫面積)에 비하여 제약량(制約量)의 변화(變化)에 따른 평준화(平準化) 경향(傾向)이 뚜렷하고, 분기별(分期別) 수확량(收穫量)의 평준화(平準化)가 이루어지면 분기별(分期別) 수확면적(收穫面積)은 이에 종속(從屬)되어 평준화(平準化)하는 경향(傾向)이 있다. 5. 제약조건(制約條件)의 강도(强度)가 높아짐에 따라 총수확량(總收穫量)은 점감적(漸減的)으로 감소(減少)하므로 빠른 시기(時期)에 엄정보속(嚴正保續)과 엄정영급배치(嚴正令級配置)를 의도(意圖)할 수록 총수확량(總收穫量)의 손실(損失)은 그만큼 더 증가(增加)한다. 6. 같은 계획기간(計劃期間) 및 제약조건하(制約條件下)에서의 총수확량(總收穫量)은 벌채영급(伐採令級)을 낮추고, 그 범위(範圍)를 넓힐수록 증가(增加)한다. 또한 벌채영급(伐採令級) 범위(範圍)의 상한(上限)을 고정(固定)하고, 그 하한(下限)을 1영급(令級)씩 높였을 때에 총수확량(總收穫量)이 감소(減少)되는 속도(速度)는, 그 범위(範圍)의 하한(下限)을 고정(固定)하고 상한(上限)을 1영급(令級)씩 낮추었을 때의 감소(減少) 속도(速度)보다 크다. 7. 본(本) 연구(硏究)에 제시(提示)된 LP수확조절(收穫調節)모델은 영급구성(令級構成)이 복잡(複雜)한 임분(林分)에 적용(適用) 가능(可能)하며, 간벌계획(間伐計劃)을 간단히 포함(包含)시킬 수 있고, 제약량(制約量)의 변화(變化)에 따른 총수확량(總收穫量)의 손실(損失)을 쉽게 계측(計測)할 수 있는 등 여러가지 장점(長點)이 있으므로, 우리나라의 현행(現行) 삼림수확조절법(森林收穫調節法)을 보완(補完)하기 위해서도 이 기법(技法)이 유효(有效)하게 이용(利用)될 수 있을 것으로 보인다.

  • PDF