• Title/Summary/Keyword: Six-axis Force/Moment Sensor

Search Result 14, Processing Time 0.021 seconds

A Force/Moment Direction Sensor and Its Application in Intuitive Robot Teaching Task

  • Park, Myoung-Hwan;Kim, Sung-Joo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.236-241
    • /
    • 2001
  • Teach pendant is the most widely used means of robot teaching at present. Despite the difficulties of using the motion command buttons on the teach pendant, it is an economical, robust, and effective device for robot teaching task. This paper presents the development of a force/moment direction sensor named COSMO that can improve the teach pendant based robot teaching. Robot teaching experiment of a six axis commercial robot using the sensor is described where operator holds the sensor with a hand, and move the robot by pushing, pulling, and twisting the sensor in the direction of the desired motion. No prior knowledge of the coordinate system is required. The function of the COSMO sensor is to detect the presence f force and moment along the principal axes of the sensor coordinate system. The transducer used in the sensor is micro-switch, and this intuitive robot teaching can be implemented at a very low cost.

  • PDF

Experiment of a 3D Motion Input Device (3차원 운동 입력장치 구현)

  • Lee, Woo-Won;Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.173-178
    • /
    • 1999
  • In many areas of technology there are machines and systems controllable in up to six degrees of freedom. Helicopters and underwater vehicles, industrial robots are among the first representatives of this category. They need six degrees of freedom in order to move and orient within their workspace. An even broader and more explosively growing area is 3D computer graphics and virtual environment. In this work, functions of 3D input device are described and two types of commercial 3D input device are presented. Then, a preliminary experiment of a low cost 6 axis force/moment sensor is presented that can also be sued as a 3D input device. A low cost force/moment sensor and its application in robot teaching experiment is described. It computes the direction of 3 components of the force and 3 components of the moment applied by human holding the sensor by hand. The concept is shown by an experiment where the tool position and orientation of a robot in 3 dimensional space is controlled by the proposed sensor.

  • PDF

Development of a 6-axis Robotic Base Platform with Force/Moment Sensing (힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발)

  • Jung, Sung Hun;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2019
  • This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

Development of Intelligent robot' hand with Three Finger Force Sensors (손가락 힘센서를 가진 지능형 로봇손 개발)

  • Kim, Gab-Soon;Shin, Hyi-Jun;Kim, Hyeon-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three finger sensors for a humanoid robot. In order to grasp an unknown object safely, the intelligent robot's hand should measure the mass of the object, and determine the grasping force using the mass, finally control the grasping force using the finger sensors and the controller. In this paper, the intelligent robot's hand for a humanoid robot was developed. First, the six-axis force/moment sensor was manufactured. second, three finger force sensors were designed and fabricated, third, the high-speed controller was manufactured using DSP(digital signal processor), finally, the characteristic test for determining a grasping force and for grasping an unknown object safely It is confirmed that the hand could grasp an unknown object safely.